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Abstract

In recent decades, numerous code-based digital signature schemes following the hash&sign
paradigm have been proposed, often turning out to be insecure and demonstrating that
the cryptographic community still seems far from a satisfactory solution in this area.

The first major question we pose in this thesis is whether it is possible to construct, in
this regard, a signature scheme that enjoys a solid security reduction and is also efficient.
We discuss a proposal that combines some new ideas, but we anticipate that it suffered a
severe attack two years ago, making it unusable.

The second question we pose is the possibility to say something about the security of
other schemes. According to this, we leave the constructive side and explore the cryptana-
lytic one, analyzing HWQCS. We break its security assumptions and violate the EUF-CMA
security. We also attempt to break Wave, and although the cryptanalysis we propose will
not be successful, the intermediate results we obtained will have value in themselves and
will provide nice material to address other research questions.

Digital signatures can also be obtained by transforming an interactive protocol into
a non-interactive one, typically using the Fiat-Shamir transform. Recently, numerous
optimizations to the basic paradigm have been introduced, including the well-known fixed-
weight optimization. Although this technique is widely used, its underlying security as-
sumptions are still not well understood, and the formal security of these schemes has not
yet been proven. With the intention of laying a first brick in this direction, we prove that
the underlying interactive protocol still enjoys knowledge soundness. Finally, we asked our-
selves if it is possible to follow an alternative path, building a transform that is fixed-weight
by design and easily produces secure signatures.

These are the main questions targeted by this thesis, forming the fil rouge that guides
the narrative. In the process of addressing them, several secondary questions will naturally
arise, which will be described and explored throughout the discussion.
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Introduction

“Wer dies Wasser und seine Geheimnisse verstünde, so schien ihm, der würde
auch viel anderes verstehen, viele Geheimnisse, alle Geheimnisse.”

Siddhartha, H. Hesse

Intuitively, we would like every cryptographic scheme to ultimately base its security on
some computationally intractable problem. A formalization of this intuition is provided
by NP-complete problems, introduced by Karp in 1972 as the hardest problems within the
NP class [Kar72].

The first public-key cryptographic schemes, in particular the key exchange protocol
proposed by Diffie and Hellman in 1976 [DH22] and the RSA scheme developed one year
later by Rivest, Shamir, and Adleman [RSA83], are based on the reasonable assumption
that the discrete logarithm and integer factorization problems are computationally in-
tractable. Due to their structural simplicity, small key sizes, and good performance, these
algorithms have garnered increasing attention since their birth, even though no reduction
proving these two problems to belong to the NP-complete class has ever been established.
A few years later, in 1978, Berlekamp, McEliece, and van Tilborg demonstrated that two
well-known problems related to linear codes, namely the Syndrome Decoding Problem and
the Codeword Finding Problem, belong to the NP-complete class, paving the way for their
potential use in cryptography [BMVT78]. Indeed, in the same year, McEliece came up with
a public-key cryptosystem based on these problems [McE78], and a dual version of this
cryptosystem was later proposed by Niederreiter in 1986 [Nie86]. Despite the underlying
problems being NP-complete, these schemes faced significant challenges due to their large
key sizes and limited practical feasibility compared to competing schemes such as RSA.

The course of events might have been different if Peter Shor had not developed, in
1994, a quantum algorithm capable of solving both factorization and discrete logarithm
problems in polynomial time [Sho94]. Although there are currently no quantum comput-
ers capable of satisfactorily implementing this algorithm, the theoretical description of the
attack alone has motivated the cryptography community to begin a transition to commu-
nication methods, in particular encryption and digital signature schemes, which can be
considered reasonably safe even in front of a possible quantum computer. In this sense,
NP-complete problems represent natural starting points for this research.

While McEliece’s algorithm offers, almost half a century after its introduction, a solid
scheme that demonstrates the validity of linear codes in the creation of encryption schemes,
many efforts have been made to try to use linear codes to also build digital signature
schemes. In this regard, two constructive frameworks can be distinguished. On the one
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hand, there are schemes following the hash&sign paradigm, while on the other hand, there
are schemes based on proofs of knowledge. The former approach requires the presence of a
structured code for which efficient decoding is possible, and it also demands masking this
code so that it appears as a random one to an adversary. The security of the scheme is
thus primarily based on the assumption that the adversary cannot obtain any information
about the structured code and, secondarily, on the fact that decoding a random code is
an intractable problem. Despite we know this second problem to be NP-complete, the
indistinguishability of the structured codes underlying these schemes from random ones is
a much more delicate assumption, which has sometimes proven to be simply false [Fau+13;
GOT12]. Among the folds of these assumptions lies another issue: information leakage,
a phenomenon that afflicts many of these schemes, for which some bits of the private
key (involved in the signing process) could be reconstructed by an adversary. In recent
decades, numerous code-based digital signature schemes following the hash&sign paradigm
have been proposed [CFS01; Dal07; KKS97; RZW+17; Bal+13; Per18; Gab+14; Kim+22;
Rit+23; FRX+17; Son+20; LXY20; PMT22; TP24; DAST19], often turning out to be
insecure [OT11; DMP21; PT16; SBC19; Xag18; DG20; HW24; Ara+21; Bal+21b; PT23;
PT24] and demonstrating that the cryptographic community still seems far from a sat-
isfactory solution in this area. Digital signatures can also be obtained by transforming
an interactive protocol into a non-interactive one, typically using the Fiat-Shamir trans-
form. Loosely speaking, if the interactive protocol is complete, knowledge-sound and zero-
knowledge, it is possible to apply the Fiat-Shamir transform and obtain an EUF-CMA
secure signature scheme. In particular, the zero-knowledge property prevents the possi-
bility of information leakage and solves numerous problems of the hash&sign framework.
Recently, numerous optimizations to the basic paradigm have been introduced, including
the well-known seed tree, fixed-weight and multiple public key optimization, which modify
the interactive protocol, and consequently the non-interactive one. As a result of these
ongoing efforts, as of now the NIST second call for digital signature schemes still has two
code-based schemes in the running, namely CROSS[Bal+23a] and LESS [Bia+20], both of
which follow the Fiat-Shamir framework, with the optimizations mentioned above.

This thesis moves in the generic framework outlined above and represents part of the
author’s work as a PhD student in Trento. About two-thirds of the materials collected here
have already appeared in preprints [PMT22; Bat+24] and publications [PT24]: only minor
revisions were made to fit them into a more coherent and up-to-date dissertation. Other
sections are instead unpublished, as they have not (yet) reached the maturity necessary to
be considered articles in their own right. The following table summarizes the main sources
for each part of this thesis.

Sec 1.1, 1.2, 1.3 Known results
Sec 2.1 [PMT22]
Sec 3.1 [PT24]

Sec 3.2, 3.3 Unpublished
Sec 4.1 Known results
Sec 4.2 [Bat+24]
Sec 4.3 Unpublished

We detail below the content of each chapter:

• Chapter 1 serves as a mathematical introduction and gathers some classic results on
how complexity theory relates to cryptography, as well as some basic notion of digital

2
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signatures and linear codes.

• Chapter 2 explores the possibility of building a code-based hash&sign signature
scheme using QC-LDPC codes. We will describe the ideas behind this construc-
tion, as well as an attack presented in 2023 [PT23] which undermined the security of
this scheme.

• Chapter 3 shifts the attention from the constructive to the cryptanalytic level. Sec-
tion 3.1 is completely devoted to the cryptanalysis of HWQCS [TP24], a signature
scheme born from the ashes of the one proposed in the previous chapter. In partic-
ular, we will show how the scheme is affected by an information leakage, and how
to exploit it to mount a universal forgery attack [PT24]. Section 3.2 is dedicated to
Wave [DAST19] and to an attempt to break this scheme. In particular, we will try to
break the formal security building an efficient distinguisher that can recognize with
good probability whether a given input code is a random code or whether it is one of
the structured codes involved in this scheme. Although the cryptanalysis will turn
out not to be successful, the ideas behind this attempt will provide sufficient material
for another work, exposed in Section 3.3. In this section we will modify the standard
ISD paradigm and use these algorithms to determine the weight distribution of an
given code.

• Chapter 4 moves attention from cryptanalysis to the theoretical foundations of cryp-
tography. The motivations on which this chapter is based are to be found in the
code-based schemes recently proposed at the NIST PQC, and in particular in the
fixed-weight optimization which have been introduced in these schemes. Although
this optimization is widely used, the security assumptions underlying it are still not
well understood. In particular, one question that has been overlooked is whether the
modified interactive protocol still satisfies the knowledge-soundness property. With
the intention of recovering the formal security of these schemes, in Section 4.2 we
address and provide a positive answer to this question, laying a first brick in this di-
rection [Bat+24]. Finally, in Section 4.3 we focus on non-interactive zero-knowledge
proofs, trying to construct a new transform, which is fixed weight by design and
produces provably secure proofs without asking to modify (and so proving properties
on) the original interactive protocol.

The work presented in this thesis is designed for transversal reading, so that the reader
interested in a specific topic can reach it in the easiest way possible. Despite this, we
suggest a chronological reading order, which, in our opinion, also allows for a pleasant
climax from the survey-level of Chapter 1 to the more technical analysis of Chapter 4.

3





Chapter 1

Preliminaries

In the following, we introduce some fundamental concepts from complexity theory that will
be useful throughout our discussion. The description we provide in the following is mainly
taken from [AB09] and [BS20], but also [GJ79b; Kar75; Kar10; GMR88; BMVT78]. We
refer the interested reader to these works for further details. The last part of the chapter
is devoted to linear codes. In this regard, results are mostly taken from [WGR22].

1.1 Complexity Theory: a Cryptographic Approach
“The great importance ... [of ] Turing’s computability is largely due to the fact
that with this concept one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on
the formalism chosen.”

K. Gödel, 1946

In this thesis, we will only deal with computable functions (for which an algorithm can
be described to compute the result of the function in a finite number of steps) and our
main concern will be about their complexity, namely the relationship between the input
size and the execution time of an algorithm that computes this function. Turing machines
formalize this concept clearly [AB09]. Informally, a Turing machine is a mathematical
model of computation describing an abstract machine that manipulates symbols on a strip
of tape according to a table of rules. Despite the model’s simplicity, it is capable of
implementing any algorithm. We still refer to Turing machines because both the input size
and the execution time can be defined unambiguously in this model.

1.1.1 Languages: P, NP and IP
Decision problems are one of the central topics in computational complexity theory. A
decision problem is a computational problem with a binary outcome: either yes or no. In
the first case, we say that the algorithm accepts the input string; otherwise, we say that
the algorithm rejects it. Such problems can be represented as formal languages, that is,
subsets of {0, 1}∗, where instances producing a yes result are members of the language, and
those producing a no result are non-members. Given a formal language (i.e., a decision
problem), the goal is to design an algorithm capable of determining whether a given input
string belongs to that language. Complexity theory investigates, among other aspects, the
complexity of such algorithms, with the tacit aim of dividing languages in fundamental
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complexity classes. We give a description of just some of them, which are very important
for the cryptography side.

The complexity class P, namely, the polynomial-time class, contains all decision problems
that can be solved by a deterministic Turing machine in polynomial time.

Definition 1.1.1 (P). A language L ⊆ {0, 1}∗ is polynomial if there is a polynomial-time
Turing machine M such that for every input string x ∈ {0, 1}∗

x ∈ L⇐⇒ M(x) = 1.

The set of all polynomial languages is denoted with P.

Over time, and still today, research has come up against languages for which it is not
clear whether they are decidable in polynomial time or not. From here the necessity to
formalize a slightly more refined class of languages, i.e. those languages (which perhaps we
do not know how to solve in a reasonable time, but) for which someone (normally referred to
as “the prover”) who knows how to solve them in an affirmative way can convince us too of
this fact. Intuitively, our interaction with this prover should satisfy three main properties.
First, we want to be convinced of a true statement. Second, we do not want to be convinced
of a false statement. Third, we would like to make a decision in polynomial time. This is
the intuitive concept of theorem-proving procedures [Coo23], and the NP class constitutes a
nice formalization of this intuition. Among all possible equivalent formulations, we report
the one proposed in [AB09].

Definition 1.1.2 (NP). A language L ⊆ {0, 1}∗ is nondeterministic polynomial if there
exist a polynomial p : N −→ N and a polynomial-time Turing machine M such that for
every input string x ∈ {0, 1}∗

x ∈ L⇐⇒ ∃c ∈ {0, 1}p(|x|) : M(x, c) = 1.

If x ∈ L and c ∈ {0, 1}p(|x|) satisfy M(x, c) = 1, then we call c a certificate for x (with
respect to the language L and machine M). The set of all nondeterministic polynomial
languages is denoted with NP.

What the definition mimics is the presence of a second (possibly unbounded) Turing
machine which can solve the decision problem, find a proof (i.e., a certificate) and send
it in order to convince us that a given string is indeed in the language. Observe that the
definition only requires a (polynomially verifiable) certificate to exist only for yes answers,
while no instances (i.e., strings x such that x ̸∈ L) might not be verifiable.

Remark 1.1.3. An alternative definition of NP highlights the meaning of the class name.
NP can be seen as the set of problems that can be solved in polynomial time by a non-
deterministic Turing machine (NTM). Informally, a non-deterministic Turing Machine is
a Turing machine with two different, independent transition functions. At each step, it
makes an arbitrary choice as to which function to apply, and every sequence of choices
defines a possible computation of the machine. We say that a nondeterministic Turing
machine accepts an input x if at least one computation (i.e., one of the possible arbitrary
sequences of choices) terminates in an accepting state. This description is the basis for
the abbreviation NP for Nondeterministic Polynomial languages. We refer the interested
reader to [Sip96] for more details on NTMs.

6
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Notice that P ⊆ NP, as Definition 1.1.2 reduces to Definition 1.1.1 if we set q(n) = 0,
i.e., we accept an empty certificate; languages in P are polynomially verifiable without
need of certificates. On the other hand, the natural temptation is to assert that NP is
strictly larger than P. Despite this, no formal proof of this has been found to date. Today,
the question of whether P ̸= NP remains one of the most fundamental open problems in
mathematics [Coo00]. In order to better assess the problem, we set up a hierarchy within
NP in order to identify, if possible, languages that are harder than others [AB09].

Definition 1.1.4. Given two languages L,L0 ∈ NP, we say that L is polynomially re-
ducible to L0, and we write L ≤p L0, if there is a function R : {0, 1}∗ −→ {0, 1}∗ such
that

x ∈ L⇐⇒ R(x) ∈ L0

and R halts in polynomial time w.r.t. |x|.

In other words, R maps strings in L to strings in L0 and strings that are not in L to
strings that are not in L0. Note that we require R to be computable in polynomial time,
i.e., there must be a polynomial p such that R(x) is computed in at most p(|x|) steps. If
L ≤p L0, we say that L0 is at least as hard as L. In fact, if we have a procedure to decide
L0, we can apply it to decide also L with just a polynomial overhead due to the reduction.

In [AHU74] it has been shown that the satisfiability problem, SAT for short, which be-
longs to NP, exhibits a remarkable property. Specifically, any decision problem in NP
can be reduced to SAT. Consequently, while SAT might theoretically have a polynomial-
time algorithm, such a discovery would imply that other well-known NP problems admit
polynomial-time solutions. However, despite decades of effort, researchers have been un-
able to find polynomial-time algorithms for any NP problems. This strongly suggests that
SAT does not have a polynomial-time algorithm, and thus that P ̸= NP. Furthermore,
some years later Karp [Kar10] discovered some results that seemed to confirm this intuition,
which is made explicit in his work:

“In this paper we give theorems that suggest, but do not imply, that these prob-
lems, as well as many others, will remain intractable perpetually.”

R. Karp, 1972

More in detail, in [Kar10] it has been shown that SAT can itself be reduced in the
sense described above to many other NP-problems. Thus if any of these NP-problems
possesses a polynomial time algorithm, then so does every NP-problem, and hence NP=P.
NP-problems with this property are called NP-complete problem, and are formalized as
follows [AB09].

Definition 1.1.5 (NP-Complete Languages). We say that a language L ∈ NP is NP-
complete if for every language L′ ∈ NP we have that L′ ≤p L.

Over the years, the list of NP-complete problems has gradually expanded: [GJ79a]
contains hundreds of problems known to be NP-complete; and if NP̸=P is true then no
NP-complete problem can have a polynomial-time algorithm.

The intuitive notion of theorem-proving procedure, formalized in a nice way with the
NP class, can be further developed.

7
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“The notion of proof, like the notion of computation, is an intuitive one. Intu-
ition, however, may and must be formalized. [...] Each formalization, however,
cannot entirely capture our original and intuitive notions, exactly because they
are intuitive. Following our intuition, probabilistic algorithms are means of
computing, though they are not in the previous formal model. Similarly, NP is
an elegant formalization of the intuitive notion of a theorem proving procedure.
However, NP only captures a particular way of communicating a proof.”

S.Goldwasser, S.Micali, C.Rackoff, 1985

[GMR19] points out some limits of the NP class in grasping the intuitive concept of
proof-system. In order to refine this concept, they introduce the IP class (which stands
for Interactive Polynomial) as the class of decision problems efficiently solvable by an
interactive proof system (interactive proof for short). An interactive proof system consists
of two machines, a prover P, which presents a proof that a given string x is a member of
some language, and a verifier V, which checks that the presented proof is correct. These two
machines exchange a polynomial number of messages (w.r.t. |x|) and once the interaction is
completed, the verifier must decide whether or not x is in the language. The formalization
of this intuition, as given in [GMR19], is as follows.

Definition 1.1.6 (Binary Relation). A binary relation is a finite set R ⊆ X × Y , where
X,Y ⊆ {0, 1}∗. Given (x, y) ∈ R, we say that y is a witness for the statement x. The set
LR = {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ R} is called the set of true statements for R, or its
language.

Definition 1.1.7 (Interactive Proof). An interactive proof (P,V) for a binary relation
R ⊆ X ×Y is an interactive protocol between two probabilistic polynomial-time machines
P and V. The prover P takes as input a pair (x, y) ∈ R while the verifier V takes as input
x. As the output of the protocol - denoted by (P(y),V)(x) - V either accepts (outputs 1)
or rejects (outputs 0). We say that a transcript, i.e. the set of all messages exchanged in
a protocol execution, is accepting (rejecting) if V accepts (rejects, respectively).

An interactive proof, as defined in [GMR19], is required to satisfy two properties.

Definition 1.1.8 (Completeness). An interactive proof (P,V) for a binary relation R ⊆
X × Y is complete if, for every (x, y) ∈ R, we have

Pr[(P(y),V)(x) = 0] ≤ ρ(x)

where the value ρ(x) - called completeness error - is negligible (in |x|). If ρ(x) = 0 for all
x ∈ LR, the protocol is said to be perfectly complete.

Definition 1.1.9 (Soundness). An interactive proof (P,V) for a binary relation R ⊆ X×Y
is sound if, for every x ̸∈ LR and a (potentially-dishonest) prover P∗, we have

Pr[(P∗,V)(x) = 1] ≤ σ(x)

where the value σ(x) - called soundness error - is negligible (in |x|).

Note that an interactive proof which satisfies both the previous properties allows a
prover P to convince the verifier V that a statement x is true. Furthermore, it is immediate
to verify that NP ⊆ IP, as any language in NP can be decided by a very simple type of
interactive proof system, where the prover comes up with the proof certificate and the
verifier is a deterministic polynomial-time machine that checks it. It is complete because
the certificate will make it accept if there is one, and it is sound because the verifier cannot
accept if there is no certificate.
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1.1.2 Interactive Proofs Systems and Cryptography
In the following, we limit the attention to a particular class of interactive proofs which are
useful in cryptography. The first constraint that we have is that, within an execution of an
interactive proof (P,V), the prover P always sends the first and the last message. Hence,
the number of communication rounds is odd, i.e. of the form 2µ+1 with µ ∈ N∗. We refer
to an interactive proof having 2µ+1 communication rounds with the name (2µ+1)-round
interactive proof. When µ = 1, and thus the rounds are only 3, we call it Sigma protocol,
and usually denote it with Σ. Another common constraint for an interactive proof is to be
public coin [AF22b], in the sense of the following definition.

Definition 1.1.10 (Public-Coin). An interactive proof (P,V) is public-coin if all V random
choices are made public.

If an interactive proof is public-coin, the verifier needs to send to the prover only
their random choices. For this reason, we call challenges the messages sent by the verifier
and challenge set the set from which verifier’s messages are sampled. In the case of a
(2µ+ 1)−round interactive proof, we define the challenge set Ch as the Cartesian product
of µ round challenge sets Ch[i], with i ∈ {1, . . . , µ}, meaning that the challenge for the
i-th round is sampled from Ch[i]. We refer to Figure 1.1 for a graphical representation of
a Sigma protocol workflow.

P(x, y) V(y)

Generate commitment a
a−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−− Generate challenge c

Generate response z
z−−−−−−−−−−−−−−−→

accept (1) or reject (0)

Figure 1.1: Sigma protocol workflow.

Sometimes in cryptography, given a language L and a statement x ∈ L, we would like
a honest prover to be able to convince a verifier of the validity of the given statement
without ever giving the verifier any other information except truthiness of the statement
itself. Namely, x ∈ L. This is formalized by the so called zero-knowledge requirement.

The (Honest Verifier) Zero Knowledge Requirement

This property formalizes the fact that transcripts generated by the interaction between
a prover and a honest verifier must be indistinguishable from those that could be gener-
ated by someone without the witness. The precise definition of this fact is given in the
following [BS20].

Definition 1.1.11 (Honest Verifier Zero Knowledge). Let (P,V) be an interactive protocol
for R ⊆ X × Y . We say that (P,V) is honest verifier zero knowledge, or HVZK, if there
exists an efficient probabilistic algorithm Sim (called a simulator) such that for all possible
pairs (x, y) ∈ R, the output distribution of Sim on input x is identical to the distribution
of a transcript of a conversation between P (on input (x, y)) and V (on input x).

The term “zero knowledge” is meant to suggest that an adversary learns nothing from
P , because an adversary can simulate conversations on his own (using the algorithm Sim),
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without knowing y. The term “honest verifier” conveys the fact this simulation only works
for conversations between P and the actual, “honest” verifier V , and not some arbitrary
algorithm.

The Knowledge Soundness Requirement

An interactive proof which satisfies the previous properties allows a prover P to convince
the verifier V that a statement x is true, without disclosing any other information except
the validity of the statement. However, it does not guarantee anything about P’s knowledge
of a witness y such that (x, y) ∈ R. When an interactive proof is meant to allow a prover
(not only that a statement is true, but also) to convince a verifier they know a witness, it is
further required to be knowledge sound. Informally, this means that any dishonest prover
who does not know a witness can only convince a verifier with some small probability κ,
which is called the knowledge error. This property is formalized by requiring that there
exists an efficient algorithm - the extractor - that, given oracle access to a dishonest prover
who succeeds with probability ε > κ, outputs a witness with probability at least ε− κ up
to a multiplicative polynomial loss in the security parameter [AF22b].

Definition 1.1.12 (Knowledge Soundness). An interactive proof (P,V) for a binary rela-
tion R ⊆ X×Y is knowledge sound, with knowledge error κ, if there exists an algorithm Ext
that, given as input any x ∈ X and rewindable oracle access to a (potentially-dishonest)
prover P∗, runs in an expected polynomial time (in |x|) and outputs a witness y ∈ Y for x
with probability

Pr[(x,ExtP
∗
(x)) ∈ R] ≥ ε(x,P∗)− κ(x)

poly(|x|)
,

where ε(x,P∗) = Pr[(P∗,V)(x) = 1]. The algorithm Ext is called knowledge extractor.

Remark 1.1.13. To simplify the subsequent analysis, where not otherwise specified, we
will assume that the prover P∗ is deterministic. In fact, it is possible to show that the
extractor is well-defined even when restricted to deterministic provers [AF22a]. More
precisely, suppose that P∗ is a probabilistic prover, and denote by P∗[r] the deterministic
prover obtained by setting the randomness of P∗ to r. Then, it is easy to show that
ε(x,P∗) = E[ε(x,P∗[r])] and Pr[(x,ExtP

∗
(x)) ∈ R] = E

[
Pr[(x,ExtP

∗[r](x)) ∈ R]
]
, where

the expected value is taken over the random choice of r.

Definition 1.1.14 (Proof of Knowledge). An interactive proof (P,V) for a binary relation
R ⊆ X × Y which satisfies both completeness with completeness error ρ and knowledge
soundness with knowledge error κ is a proof of knowledge if there exists a positive-definite
polynomial p over the integers such that 1− ρ(x) ≥ κ(x) + 1

p(|x|) for all x ∈ X.

A common and easier strategy to prove the knowledge soundness of a public-coin in-
teractive proof is showing a stronger property, called special soundness [HL10; ACK21b;
AF22b], which informally means that there exists an extracting algorithm able to compute
a witness given enough accepting transcripts relative to a true statement x. In particular,
a 3-round interactive proof is 2-special-sound if there exists an efficient algorithm that,
given two valid transcripts (a, c, z) and (a, c′, z′) relative to the same statement x and with
distinct second messages (challenges) c ̸= c′, outputs a witness for x. This property can be
generalized both in the necessary transcripts and in the number of rounds, leading to the
notion of (k1, . . . , kµ)-special soundness for (2µ+ 1)-round interactive proofs. Notice that
this coincides with the standard 2-special-soundness notion when µ = 1 and k1 = 2. In
order to formalize this concept, we need to firstly introduce the notion of tree of transcripts.
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Definition 1.1.15 (Tree of Transcripts). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N∗, R ⊆ X × Y be
a binary relation and (P,V) a (2µ + 1)−round public-coin interactive proof for R, where
V samples i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinality Ni ≥ ki. A
(k1, . . . , kµ)-tree of transcripts for (P,V) is a set of K =

∏µ
i=1 ki transcripts relative to a

given statement x ∈ X, arranged in the following tree structure, where nodes correspond
to prover’s messages while edges to verifier’s challenges. From every node at level i, with
i ∈ {1, . . . , µ}, exactly ki edges originate, corresponding to ki pairwise-distinct challenges
belonging to Ch[i]. Then, each of the K transcripts corresponds to exactly one path from
the root node to a leaf node.

A graphical representation of a tree of transcripts is provided in Figure 1.2, where a[1]

denotes the prover’s first message, c[1]1 , . . . , c
[1]
k1

are sampled from Ch[1], and so on. As above,
we refer the interested reader to [ACK21b] and [AF22b] for further details.

a[1]

a
[2]
1

1a
[3]
1

1,...,1a
[µ+1]
1 1,...,1a

[µ+1]
kµ

1c
[2]
1

1a
[3]
k2

1c
[2]
k2

c
[1]
1

a
[2]
k1

k1a
[3]
1

k1c
[2]
1

k1a
[3]
k2

k1,...,kµ−1a
[µ+1]
1 k1,...,kµ−1a

[µ+1]
kµ

k1c
[2]
k2

c
[1]
k1

. . . . . . . . .

. . . . . . . . .

. . .

Figure 1.2: Graphical representation of a (k1, . . . , kµ)−tree of transcripts for a (2µ +
1)−round public-coin interactive proof. Left subscripts represent the ancestor nodes, su-
perscripts represent the corresponding round, while right subscripts are used to enumerate
edges originating from a node and their corresponding arrival nodes.

Definition 1.1.16 ((k1, . . . , kµ)-Special Soundness). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N∗ and
R ⊆ X × Y be a binary relation. A (2µ+ 1)-round public-coin interactive proof (P,V) for
R, where V samples i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinality Ni ≥ ki,
is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special sound, or simply (k1, . . . , kµ)-special sound, if
there exists a polynomial-time algorithm that, on input a true statement x ∈ X and a
(k1, . . . , kµ)-tree of accepting transcripts for (P,V) and relative to x, outputs a witness
y ∈ Y for x.

In the case of a Sigma protocol, it is immediate to prove that k-out-of-N -special sound-
ness implies knowledge soundness with knowledge error (k − 1)/N [HL10; ACK21a]. The
general (2µ+ 1)−round case is much more involved, and it has only recently been shown
[ACK21b] that (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special soundness tightly implies knowl-
edge soundness, with knowledge error

κ = 1−
µ∏

i=1

(Ni − ki + 1)

Ni
.

Within the family of interactive protocols that satisfy the correctness, knowledge sound-
ness and honest-verifier zero-knowledge properties, we are interested in those that have a
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negligible knowledge-error. More specifically, with an eye toward cryptographic applica-
tions, given a security level λ we would like a dishonest prover to be able to make the
verifier accept with probability at most 2−λ. Some interactive protocols, like the one pro-
posed by Schnorr [Sch91], have a challenge space whose cardinality can be set equal to 2λ.
As a consequence, their knowledge error is κ = 1/|Ch| = 2−λ and therefore they already
possess this property. Despite these cases, the common scenario is another one [Ste90;
Ste93; Vér97; CVA10; DW22; Tan+22; Bia+20; Bal+23a], where the challenge space is
smaller and consequently the knowledge error κ is bigger (with the usual case being 1/2
or 1/3). Although this fact would seem to exclude these protocols from cryptographic
applications, it is still possible to use them as building blocks of other interactive proto-
cols, by repeating the basic units in parallel t times, i.e. the prover and the verifier run
t parallel executions of the protocol and the verifier accepts if the resulting t transcripts
are accepting. We denote by (Pt,Vt) the t-fold parallel repetition of (P,V). While this
technique has been broadly adopted, it was only in 2022 that Attema and Fehr [AF22a]
proved that the t-fold parallel repetition of any (k1, . . . , kµ)-special-sound (2µ + 1)-round
public-coin interactive proof optimally reduces the knowledge error from κ down to κt.

1.2 Digital Signatures
Informally, a digital signature scheme is a protocol conducted between two parties, a prover
and a verifier. The prover is equipped with a pair (sk, pk) of secret and public key, respec-
tively, while the verifier is only given pk. The flow of the protocol is as follows: the prover
chooses a message m, and creates a signature σ using his secret key sk and the message
m, getting a signed message (m,σ). The verifier reads (m,σ) and uses the public key pk
to check that (with some probability) the sender is legit, and the message has not been
altered. Formally, we provide the following definition [BS20].

Definition 1.2.1 (Signature Scheme). A digital signature scheme S is a triple of algorithms
(KeyGen,Sign,Vf) which are defined as follows:

• The key generation algorithm KeyGen is a probabilistic algorithm which, given as
input 1λ, where λ is the security parameter, outputs a pair of matching public and
private keys (pk, sk);

• The signing algorithm Sign is probabilistic and takes as input a message m ∈ {0, 1}∗
to be signed and returns a signature σ = Signsk(m);

• The verification algorithm takes as input a message m and a signature σ. It returns
Vfpk(m,σ) which is 1 if the signature is accepted and 0 otherwise. It is required that
Vfpk(m,σ) = 1 if σ = Signsk(m).

This last condition described above directly translates into the correctness of the
scheme. In this case, in fact, every signature produced honestly, following first the key
generation algorithm KeyGen and then the signature algorithm Sign, will be such that the
verification algorithm Vf will return 1 as output. However, correctness is not the only
desirable property of a signature scheme. In particular, we would like a signature scheme
to satisfy some notion of “security”.

In the case of digital signature schemes, the security is modeled using a game between
a challenger and an adversary A, which is usually a a polynomial-time probabilistic Turing
machine. The game models a possible scenario where A tries to break S using an attack
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when the challenger is using the scheme S. The security of a scheme is determined by
two parameters, the kind of attack we are allowing and the kind of information we want
to protect [GMR88]. One of these attack framework is the well known Existential Forgery
(EUF) under Chosen-Message Attack (CMA), which is one of the strongest requirement
when proving the security of a digital signature scheme. In this context, the adversary is
allowed to adaptively ask for different signatures, and at the end it can forge any fresh
message. We report the formalization proposed in [DAST19].

Definition 1.2.2 (EUF-CMA Security). Let S be a signature scheme. A forger A is a
(t, qhash, qsign, ε)-adversary in EUF-CMA against S if after at most qhash queries to the
hash oracle, qsign signatures queries and t working time, it outputs a valid forgery with
probability at least ε. We define the EUF-CMA success probability against S as:

SuccEUF-CMA
S (t, qhash, qsign) := max {ε : there exists a (t, qhash, qsign, ε) adversary} .

The signature scheme S is said to be (t, qhash, qsign)-secure in the EUF-CMA model if the
above success probability is a negligible function of the security parameter λ. Losing a bit
of precision, we normally content ourselves saying that S is EUF-CMA secure, meaning
that for every probabilistic polynomial time (t, qhash, qsign, ε)-adversary A, ε is negligible
in the security parameter λ.

Normally, when showing the EUF-CMA security of a digital signature scheme, any
hash functions involved in the scheme is simply modeled as a random oracle [BR93]. In
this case we will talk about security in the Random Oracle Model (ROM). In the specific
case in which the adversary is modeled in such a way as to be able to execute quantum
algorithms, we will talk about security in the Quantum Random Oracle Model (QROM).
The interested reader is referred to [Bon+11] for more details on this.

1.2.1 Digital Signatures From Interactive Proof Systems
It is possible to turn interactive proofs into non-interactive ones [Fis05; FS87a; Unr15;
Pas03], and eventually link a message to the proof in order to create digital signatures.
Following [BS20], we provide a formalization of this intuition with the definition below.

Definition 1.2.3 (Non-Interactive Proof). A non-interactive proof for relation R is a pair
(P,V) of (probabilistic) algorithms, a prover P and a polynomial time verifier V, such that
(1) given (x, y) ∈ R, the prover P(x, y) outputs a proof π, and (2) given x ∈ {0, 1}∗, a
purported proof π, the verifier V(x, π) outputs 0 to reject or 1 to accept the proof.

The most common case is when both the prover and the verifier are given additional
access to a random oracle. As for interactive definitions, a non-interactive proof is complete
if honestly generated proofs for (x, y) ∈ R are accepted by V with high probability. It is
sound if it is infeasible to produce an accepting proof for a false statement. In the non-
interactive setting, the soundness error, i.e., the success probability of a cheating prover
depends on the number of queries it is allowed to make to the random oracle. The same
holds true for knowledge soundness of non-interactive proofs. For a precise definition of
the knowledge soundness for non-interactive proofs, we refer to [AFK22a]. We would like
to have non-interactive proofs which inherits the main security properties (in the random
oracle model) of the interactive version. A common way to achieve this is by the Fiat-
Shamir transform [FS87c], which allows to turn any public-coin interactive proof into a
non-interactive one. We start by presenting the transform for the specific case of Sigma
protocols, showing how to modify it to obtain an EUF-CMA secure signature scheme.
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Then, we generalize this construction to an interactive proof system with (2µ+1)-rounds.
The rough idea is to replace the random challenges, which are provided by the verifier in
the interactive version, by the hash of the current message. In the following, we report
the definition proposed in [BS20], adapting the terminology to make it consistent with our
discussion.

Definition 1.2.4 (Fiat-Shamir Transform). Let Σ = (P,V) be a Sigma protocol, where
the challenge is sampled from set Ch, and let H : {0, 1}∗ −→ Ch be a hash function.
The Fiat-Shamir (FS) transformation FS(Σ) = (Pfs,Vfs) is the non-interactive proof where
Pfs(x, y) runs P(x, y) but instead of asking the verifier for the challenge c on message a,
the challenge is computed as c = H(x, a), and the response z is computed accordingly;
the output is then the proof π = (a, z). On input a statement x and a proof π = (a, z),
Vfs(x, π) accepts if, for c as above V accepts the transcript (a, c, z) on input x.

By a small adjustment, where also the to-be-signed message is included in the hashes,
the transformation turns any public-coin interactive proof into a signature scheme. The
building blocks can be informally described as follows:

• a Sigma protocol Σ = (P,V) for a relation R ⊆ X × Y ;

• a key generation algorithm KeyGen for R;

• a hash function H : {0, 1}∗ −→ Ch.

The Fiat-Shamir signature scheme derived from KeyGen and (P,V) works as follows:

• the key generation algorithm is KeyGen, so a public key is of the form pk = x, where
x ∈ X, and a secret key is of the form sk = (x, y) ∈ R;

• to sign a message m using a secret key sk = (x, y), the signing algorithm runs as
follows:

– it starts the prover P(x, y), obtaining a commitment a;

– it computes a challenge c←− H(m, a);

– finally, it feeds c to the prover, obtaining a response z, and outputs the signature
σ := (z, a).

• to verify a signature σ = (z, a) on a message m using a public key pk = x, the veri-
fication algorithm computes c←− H(m, a), and checks that (a, c, z) is an accepting
conversation for x.

For 3-round interactive protocols which satisfy the knowledge soundness and the honest-
verifier zero-knowledge property, the Fiat-Shamir transformation offer a simple and nice
way to construct digital signatures which satisfies the EUF-CMA security requirement
[KMP16].

Recently, some new signature schemes have been proposed [Bal+20; Hül+16], starting
from 5-step interactive protocols, which has made it necessary to study the transform
also in this more generic context. The Fiat-Shamir transform can be easily generalized
to the multi-round case. In this new context, it has been recently shown that the two
aforementioned signature schemes satisfy the EUF-CMA security requirement [Hül+16].

Although this ensures that an attacker needs exponential time to forge a signature, this
characterization is too coarse to determine the precise parameters needed for instantiating
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a signature scheme. To address this, it is crucial to place greater emphasis on the security
reduction. Unfortunately, in general the soundness error of the Fiat-Shamir transformed
protocol degrades exponentially in the number of rounds [AFK22a]. Concretely, for any
(2µ+1)-move interactive proof that admits a cheating probability of at most ε, captured by
the knowledge or soundness error, the Fiat-Shamir-transformed protocol admits a cheating
probability of at most (Q+ 1)µ · ε, where Q denotes the number of random-oracle queries
admitted to the dishonest prover [AFK22a]. At the same time, this fact raises the question
whether other classes of interactive proofs feature a milder security loss. These are still
open problems in research, and only some partial results have been given. For the specific
class of (k1, . . . , kµ)-special-sound protocols (which cover a broad class of use cases), the
knowledge error degrades linearly in Q, instead of Qµ, but this does not happen for the
t-fold parallel repetitions of (k1, . . . , kµ)-special-sound protocols, when t ≥ µ. Both of these
results are proven in [AFK22a]. In particular, in the latter case there is an attack that
results in a non-negligible security loss [KZ20], which affects every signature based on this
framework, such as [Bal+21a] and [Hül+16].

1.3 Linear Codes
We set out below the most relevant facts regarding linear codes. We start by stating
some elementary results, after which we analyze the main NP-complete problems related
to coding theory. With this new knowledge, we will be able to provide results regarding
code-based digital signature schemes, which we will state at the end of the section. We
refer to [WGR22] and [Bal14] for a more detailed description.

1.3.1 Elementary Results
Definition 1.3.1 (Linear Code). Let k ≤ n be positive integers. Then, an [n, k] linear
code C over the field Fq is a k dimensional subspace of Fn

q .

The parameter n is called the length of the code, the elements in the code are called
the codewords and the ratio R = k/n is called the rate of the code. In this work, we adopt
the well-established notation of considering codewords as row vectors, and thus any vector
v is treated as a row vector, so that its transpose v⊤ is a column vector. When we refer to
a code C or to an [n, k] code C without specifying anything else, we will always refer to
an [n, k] linear code. Since an [n, k] code C is a linear subspace of Fn

q , we can completely
describe it using one of the two matrices defined below.

Definition 1.3.2 (Generator Matrix). Let k ≤ n be positive integers and let C be an
[n, k] linear code over Fq. Then, a matrix G ∈ Fk×n

q is called a generator matrix for C if
the rows of G form a basis of C. Formally,

C =
{
xG | x ∈ Fk

q

}
.

Definition 1.3.3 (Parity-Check Matrix). Let k ≤ n be positive integers and let C be an
[n, k] linear code over Fq. Then, a matrix H ∈ F(n−k)×n

q is called a parity-check matrix for
C if

C =
{
y ∈ Fn

q | Hy⊤ = 0
}
.

Given a vector v ∈ Fn
q , we define the syndrome of v with respect to H as the vector

given by Hv⊤. Notice that all vectors in the same coset v+C possess the same syndrome.
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According to this, a vector v ∈ Fn
q belongs to the code C if and only if its syndrome (w.r.t.

H) is the null vector.

Definition 1.3.4 (Dual Code). Let k ≤ n be positive integers and let C be an [n, k] linear
code over Fq. The dual code of C, denoted with C⊥, is the [n, n− k] linear code over Fq,
defined as

C⊥ =

{
x ∈ Fn

q |
n∑

i=1

xiyi = 0 ∀y ∈ C

}
.

Let k ≤ n be positive integers and C be an [n, k] linear code over Fq with generator
matrix G and parity-check matrix H. Then, for some permutation matrix P and some
invertible matrix U, the systematic form of the generator matrix G is UGP = (Ik A),
where A ∈ Fk×(n−k)

q . Similarly, for some permutation matrix P′ and some invertible ma-
trix U′ the systematic form of the parity-check matrix H is U′HP′ = (B In−k), where
B ∈ F(n−k)×k

q . Whenever a generator matrix or a parity-check matrix will have this par-
ticular shape, we will say that the matrix is in Systematic Form.

In order to measure how far apart two vectors are, we endow Fq with a metric, which
is generally induced by a weight function.

Definition 1.3.5. A weight over Fq is a function w: Fq → N satisfying w(0) = 0, w(x) > 0
for all x ̸= 0, w(x) = w(−x) for all x, and w(x+ y) ≤ w(x) + w(y) for all x, y ∈ Fq.

In coding theory, one of the most classical and important examples of weights is the
Hamming weight, introduced by Hamming in 1950 for codes over finite fields [Ham50].

Definition 1.3.6 (Hamming weight). Given a finite field Fq, the Hamming weight of an
element a ∈ Fq is given by

w(a) :=

{
0 if a = 0,

1 otherwise .

We define the Hamming weight of an n-tuple x ∈ Fn
q additively by

w(x) :=
n∑

i=1

w(xi) .

A weight function induces a distance defined as d: Fn
q × Fn

q → N, where d(x, y) :=
w(x−y). The Hamming support of a vector x ∈ Fn

q is defined as the set of coordinates where
x is non-zero. Namely, Supp(x) := {1 ≤ j ≤ n | xj ̸= 0}. Note that the Hamming weight
of a vector x ∈ Fn

q is equal to the cardinality of its support, that is, w(x) = |Supp(x)|.

Remark 1.3.7. In this thesis we will only work with the Hamming metric but, as an
alternative to this classical metric, we could also endow the ambient space with other
metrics. A notable example of additive distance is the Lee distance, first proposed in
[Lee58] as an extension of the Hamming metric for the binary field. It has recently garnered
increasing attention in code-based cryptography [Bar+21b; BKW22; HTW20; Weg+24].
Another metric that has gained significant attention is the rank metric, which, unlike
the Hamming and Lee metrics, is not additive. Rank-metric codes over finite fields were
first studied in connection with association schemes by Delsarte in 1978 [Del78]. They
were also independently introduced by Gabidulin in [Gab85], where rank-metric codes are
described as Fq-linear spaces of vectors over an extension field. In other words, codewords
are matrices and the distance between two codewords is the rank of their difference.
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Once a metric is defined, one can also consider the minimum distance of a code, i.e.,
the smallest distance achieved by two distinct codewords.

Definition 1.3.8 (Minimum distance). Let C be a linear code over Fq. The minimum
Hamming distance of C is denoted by d(C) and is given by

d(C) = min{d(x, y) | x, y ∈ C, x ̸= y}.

Thanks to the linearity of C, it is immediate to verify that d(C) = min{w(x) | x ∈
C \ {0}}. The minimum distance of a code C is one of its most important parameters, as
it is related to its error detection and correction capabilities, which measure the number of
words that a code is able to detect and correct, respectively. More in detail, we can define
the (closed) ball of center x and radius t in Fn

q as

B(Fq, x, n, t) := {y ∈ Fn
q | d(x, y) ≤ t}.

When clear from the context, we will simplify the notation saying Bt(x). Given Bt(x),
we say that a code can detect t errors if for all c ∈ C, Bt(c) ∩ C = ∅. Similarly, we say
that a code can correct t errors if, for all c1, c2 ∈ C it holds that Bt(c1) ∩ Bt(c2) = ∅. In
particular, the following result holds.

Proposition 1.3.9 ( [MS77], Theorem 2). Let C be a linear code with minimum distance
d. Then:

• C can detect d− 1 errors.

• C can correct ⌊(d− 1)/2⌋ errors.

Applications normally require the correction of an error not only to be possible, but
also computationally feasible. This is the reason why we are interested in studying codes
with both a high minimum distance d and for which efficient decoding algorithms exist to
correct up to t errors, for some t ≤ ⌊(d− 1)/2⌋.

The Gilbert-Varshamov bound

In coding theory, the Gilbert-Varshamov (GV) bound is a fundamental result that provides
a lower bound on the maximum size of a code, given its length and minimum distance. We
provide an overview for codes equipped with the Hamming metric. Note that the (closed)
ball of center x and radius t, namely B(Fq, x, n, t), has the same size for any center x.
Thus, in the following, we will not specify the center of the ball and we will denote with

B(Fq, n, t) := |{y ∈ Fn
q | d(0, y) ≤ t}|

the volume of the (closed) ball of radius t in Fn
q . Finally, we will denote by A(Fq, n, d) the

maximum number of codewords of a code in Fn
q with minimum Hamming distance d.

Theorem 1.3.10. (Gilbert-Varshamov bound for the Hamming metric, [Rot06]) For a
positive integer n, assume Fn

q is equipped with the Hamming distance. The maximal size
of a code in Fn

q having minimum distance d is

A(Fq, n, d) ≥
qn

B(Fq, n, d− 1)
. (1.1)
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If C is a linear code in Fn
q equipped with the Hamming distance, we will say that C

lies on the GV bound if
|C| − 1 <

qn

B(Fq, n, d− 1)
≤ |C| .

In the following, we will specify the volume of the n-dimensional balls for the Hamming
metric.

Proposition 1.3.11 (Volume of a Hamming-metric ball, [Rot06]). Given n,w positive
integers, the volume of the n-dimensional Hamming ball of radius w in Fn

q is

B(Fq, n, w) =

w∑
i=0

(
n

i

)
(q − 1)i.

In its asymptotic form, the GV bound offers a lower limit on the rate of the code,
rather than its cardinality. Let δ be the relative distance of the code, that is d = δN . We
have that

lim
n→∞

1

n
logq(A(Fq, n, d)) ≥ 1− lim

n→∞

1

n
logq(B(Fq, n, d)). (1.2)

It has been proven that the limit in the right-hand side of the previous equation exists
and equals the q-ary entropy function hq evaluated on δ.

In the Hamming metric over finite fields, it is well known that random linear codes asymp-
totically achieve the GV bound [BF02; Pie67]. This means that we can asymptotically
estimate the minimum distance of a random code with good probability: denoting with R
the left-hand side of Eq. (1.2), we have that R ≈ 1− hq(δ), so that δ ≈ h−1

q (1−R).

1.3.2 Hard Problems on Codes
Two important computationally-hard algebraic problems arising in coding theory are the
Syndrome Decoding Problem (SDP) and the Codeword Finding Problem (CFP), as stated
in [BMVT78]. As we will see better at the end of this section, several code-based digital
signature schemes are built upon SDP, and an adversary who wants to break such schemes
is usually left with the only option of solving these problems. In addition to these classic
problems that we describe, there are many others, for example DOOM (Decoding One Out
of Many) and WE (Weight Enumerator). We will also encounter these problems during
the course of this thesis. However, since their use will be limited to few specific contexts,
we avoid reporting their definitions below, in order to leave the description as clean as
possible. We state the SDP and CFP in the following.

Definition 1.3.12 (Syndrome Decoding Problem). Let Fq be a finite field and let k ≤ n
be positive integers. The Syndrome Decoding Problem (SDP) is the problem defined as
follows:

Input : (H, y, ω), where H ∈ F(n−k)×n
q , y ∈ Fn−k

q is a vector, and ω ∈ N.

Output : x ∈ Fn
q such that Hx⊤ = y⊤ and w(x) ≤ ω.

The idea behind the SDP is that if we choose ω small enough, it is hard to find a vector
with weight smaller than ω such that its syndrome is equal to y.

Definition 1.3.13 (Codeword Finding Problem). Let Fq be a finite field and let k ≤ n be
positive integers. The Codeword Finding Problem (CFP) is the problem defined as follows:
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Input : (H, ω), where H ∈ F(n−k)×n
q and ω ∈ N.

Output : x ∈ Fn
q such that Hx⊤ = 0 and w(x) = ω.

The idea behind the CFP is that if ω is small enough it is hard to find a codeword of
the code C with parity-check matrix H such that its weight is ω, i.e. it is hard to find
codeword with small weight in a given linear code.

Our aim is to study the hardness of both the SDP and the CFP. A well known result
in computational complexity theory [AB09] states that any decision problem belonging
to the NP-Complete class has a search-to-decision reduction, i.e. it is possible to solve
an instance of the search problem with a polynomial amount of calls to an oracle for the
corresponding decision problem. The decisional version of the SDP is the Coset Weights
Problem (CWP) and the decisional version of the CFP is the Subspace Weights Problem
(SWP). Below, we give a more precise definition of these problems.

Definition 1.3.14 (Coset Weights Problem). The Coset Weights Problem is the problem
defined as follows:

Input : H ∈ Fn×(n−k)
q , a vector y ∈ Fn−k

q and a non-negative integer ω.

Output : decide whether there exists a vector x ∈ Fn
q s.t. Hx⊤ = y⊤ and w(x) ≤ ω.

Definition 1.3.15 (Subspace Weights Problem). The Subspace Weight Problem is the
problem defined as follows:

Input : H ∈ Fn×(n−k)
q and a non-negative integer ω.

Output : decide whether there exists a vector x ∈ Fn
q s.t. Hx⊤ = 0 and w(x) = ω.

In our case, if the Coset Weights Problem and the Subspace Weights Problem are NP-
complete, then we would have automatically studied the hardness of both the SDP and
the CFP and they would be as difficult as an NP-complete problem. Berlekamp, McEliece
and van Tilborg famously proved in [BMVT78] the NP-completeness of these two problems
for the case of binary linear codes equipped with the Hamming metric. In [Bar94], Barg
generalized this proof to an arbitrary finite field.

Remark 1.3.16. In the following, we make the standard abuse of notation of saying that
the Syndrome Decoding Problem and the Codeword Finding Problems are NP-complete,
always intending that (the associated decisional versions of) the Syndrome Decoding Prob-
lem and the Codeword Finding Problems are NP-complete.

Regarding these two problems, it is worth reporting a consideration made by their
authors.

“It would be very desirable to replace the phrase “of weight w” in Subspace Weight
with the phrase “of weight ≤ w”, for this would show that the problem of finding
the minimum weight of a general code is NP-complete. While we conjecture
that this is the case, we have not been able to prove it, and propose it as a
research problem.”

E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, 1978

The problem they are referring to with these words is the following.
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Definition 1.3.17 (Minimum Distance). The Minimum Distance Problem is the problem
defined as follows:

Input : H ∈ Fn×(n−k)
2 and a non-negative integer ω.

Output : decide whether there exists a vector x ∈ Fn
2 \{0} s.t. Hx⊤ = 0 and w(x) ≤ ω.

The difficulty of computing the minimum distance was later established by Vardy in
1997 [Var97].

1.3.3 Generic Solvers
To date, two primary methods are recognized for decoding random linear codes: Infor-
mation Set Decoding Algorithms (ISD) [Pra62; Ste89; LB88; MMT11; Bec+12] and the
Generalized Birthday Algorithm (GBA) [WGR22]. ISD algorithms are particularly ef-
fective when the decoding problem yields only a small number of solutions, while GBA
performs better in cases with numerous solutions. Other techniques, such as statistical
decoding [Jab01], gradient decoding [AB98], and supercode decoding [BKT99], have been
introduced but remain less competitive compared to ISD algorithms.

In the following, we focus on the leading approach for solving the Syndrome Decoding
Problem: ISD algorithms. In particular, we slightly modify the standard ISD paradigm,
to take into account the fact that we expect the algorithm to find more words than the
desired weight. We first consider a high level and general description, which encompasses
all algorithms of this family. This model will turn useful later with this thesis, when this
type of algorithms is employed to estimate the weight distribution of a linear code. We
refer to [WGR22] for a standard treatment of these algorithms. In this paper, we are
mostly interested in random codes or, at the very least, codes whose structural properties
cannot be used to somehow ease the search for codewords. To formalize this situation, we
make use of the following assumption, which is standard and folklore for the study of ISD
algorithms.

Assumption 1 (Randomness of codewords). For a given code C ⊆ Fn
q , let C̃w ⊆ Cw such

that, for any two distinct c, c′ ∈ C̃w, it holds c ̸= ac′ for any a ∈ F∗
q . Then, for any integer

w ∈ {0, . . . , n} and any codeword c ∈ C̃w, we assume that the support of c is uniformly
random over all subsets of {1, . . . , n} of size w.

Theorem 1.3.18. Let H ∈ F(n−k)×n
q be a random matrix with coefficients over Fq. Fur-

thermore, let s ∈ Fn−k
q and w ∈ N. Then,

E
[∣∣∣{x ∈ Fn

q : Hx⊤ = s⊤ ∧ w(x) = w
}∣∣∣] = (

n
w

)
(q − 1)w

qn−k
, (1.3)

where the probability is taken over the random choice of x ∈ Fn
q , considering the latter as

a probability space with the uniform distribution.

Proof. Suppose we are given a random element x ∈ Fq with Hamming weight w. Since
there are qn−k syndromes and H is random, every syndrome is equally probable, and
P(Hx⊤ = s⊤) = 1/(qn−k). Since the number of vectors of length n and Hamming weight
w is given by

(
n
w

)
(q − 1)w, the expected number of these vectors that will have syndrome

equal to s will be given by
(
n
w

)
(q − 1)w/qn−k.
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For big values of n we can estimate the volume of any Hamming Ball of fixed radius
using the q-ary entropy function, so that, considering Eq. (1.3), we can say that the number
of w-weight codewords of C is given by

NC(w) ≈ q

(
hq(w/n)−(1−R)

)
n.

Infomation Set Decoding Algorithms

By ISD, we refer to a randomized algorithm

ISD : Fr×n
q × {0, . . . , n} P(Cw),

(H, w) X.

The algorithm receives as input a description for the code (say, a parity-check matrix
H) and the desired weight w, and returns an element X in the powerset of Cw, i.e. a
set of codewords with weight w. All ISD algorithms share a common procedure which is
highlighted in Algorithm 1. In particular, the operations performed by any ISD algorithm
can be divided into three main steps:

- Partial Gaussian Elimination (lines 1-4): a random permutation π of length n is
sampled (line 2 in the algorithm). Then, Partial Gaussian Elimination (PGE) with
parameter ℓ ∈ N, 0 ≤ ℓ ≤ n−k is performed. In other words, one checks whether it is
possible to apply a change of basis on the permuted parity-check matrix π(H) ∈ Fr×n

q ,
so that a matrix with the following structure is obtained(

A 0ℓ×(n−k−ℓ)

B In−k−ℓ

)
,

where A ∈ Fℓ×(k+ℓ)
q and B ∈ F(n−k−ℓ)×(k+ℓ)

q . Notice that such a matrix is not
guaranteed to exist: indeed, if the rightmost n − k − ℓ columns of π(H) form a
matrix whose rank is less than n − k − ℓ, then PGE cannot be performed. In these
cases, a new permutation is sampled.

- Solving the small instance (line 5): because of the PGE decomposition, we have

c = (c′, c′′) ∈ π(C) ⇐⇒

{
Ac′⊤ = 0,

Bc′⊤ + c′′⊤ = 0.
(1.4)

Notice that c′ has length k+ ℓ and is, de facto, a codeword of the code whose parity-
check matrix is A. One restricts the search for c′ by requiring that it has some (low)
weight and some specific weight partition.

- Producing solutions (lines 6–1): once c′ has been found, one can easily compute the
associated c′′ from the second row of the linear system in (1.4). In other words,
we produce codewords of the form (c′, c′′) and check whether they have the desired
weight w: any such codeword corresponds to the permutation of a codeword in Cw.

This is a very general way to study ISD algorithms, but allows to identify the main
quantities we will use for our analysis. For what concerns the time complexity of each
iteration, we can use the following estimate.
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Algorithm 1 ISD operating principle
Input : H ∈ Fr×n

q , w ∈ N.
Output : set Y ⊆ Cw

// Apply random permutation and do PGE

1: repeat
2: Sample π

$←− Sn

3: Apply PGE on π(H)
4: until PGE is successful

// Solve small instance

5: X = Solve(A, ℓ)
// Test codewords associated to solutions for the small instance

6: Y ← ∅
7: for c′ ∈ X do
8: Compute c′′ = −c′B⊤

9: if wt(c′) + wt(c′′) = w then
10: Update Y ← Y ∪

{
π−1((c′, c′′))

}
11: end if
12: end for
13: return Y

Proposition 1.3.19 (Cost of one iteration). On average, one iteration of ISD uses a
number of elementary operations (sums and multiplications) over Fq counted by

O

(
tPGE
pinv

+ tSolve + |̂X|
)
,

where pinv =
∏n−k

i=ℓ+1(1− q−i) is the probability that a random (n− k)× (n− k− ℓ) matrix
has rank n − k − ℓ, tPGE and tSolve are the costs for PGE and of the subroutine Solve,
respectively, while |̂X| is the average number of solutions which are found, for the small
instance. Asymptotically, the cost is O (tSolve).

Proof. Performing PGE requires a number of operations which grows as O(n3), so it is a
polynomial in n. The number of times we need to repeated the PGE step, on average,
corresponds to the reciprocal of the probability that the chosen permutation π places, on
the rightmost side of π(H), n−k−ℓ columns which form a basis for a space with dimension
n− k− ℓ. Assuming that all columns of H behave as random vectors over Fq, with length
n− k, we get that this probability is lower bounded by a constant, since

pinv(ℓ) =
n−k−ℓ−1∏

i=0

(
1− qi

qn−k

)

=

n−k−ℓ−1∏
i=0

(
1− q−(n−k−i)

)
=

n−k∏
i=ℓ+1

(
1− q−i

)
≥

n−k∏
i=1

(
1− q−i

)
≥ 1− 1/q + 1/q2.
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The operations in lines 8–10 take polynomial time, and are repeated, on average, for |̂X|
times. To prove the formula for the asymptotic cost, we first consider that tPGE/pinv is a
polynomial in n. Moreover, if Solve returns |X| solutions, then its cost cannot be lower
than |X|. Since on average the subroutine returns |̂X| solutions, it must be tSolve ≥ |̂X|:
consequently, asymptotically, the cost of Algorithm 1 is dominated by tSolve.

Notice that, at this stage, we have provided all the necessary details apart from those
of the subroutine Solve. Yet, its functioning is crucial to determine the computational
cost of an ISD algorithm. For the moment, we keep it as a very general procedure and
consider that it will only return the codewords in π(Cw) that satisfy some constrains, e.g.,
some specific weight partition. We denote by fISD : Fk+ℓ

q −→ {0, 1} such a constraint and
assume that, whenever fISD(c

′) is equal to 1, c′ is among the outputs of the subroutine.

Proposition 1.3.20. Let pISD(w) denote the probability that, for a uniformly random
permutation π and a codeword c ∈ Cw, π(c) satisfies the constrains imposed by fISD.
Then, for a code with C with NC(w) codewords of weight w and under Assumption 1, the
probability that a given permutation π is successful for one iteration of ISD is given by

p∗ISD(w) = 1−
(
1− pISD(w)

)NC(w)
. (1.5)

Proof. By definition:

p∗ISD(w) = 1− P
[
fISD

(
π(c)

)
= 0,∀c ∈ Cw

]
.

As a consequence of Assumption 1, we have that

P
[
fISD

(
π(c)

)
= 0, ∀c ∈ Cw

]
=
(
P
[
fISD

(
π(c)

)
= 0, c

$←− Cw

])|Cw|

=
(
1− P

[
fISD

(
π(c)

)
= 1, c

$←− Cw

])NC(w)

= (1− pISD(w))
NC(w) ,

from which the result follows.

Notice that, on average, each call to Algorithm 1 returns |̂Y | = NC(w) · pISD(w) code-
words. We finally consider repeated calls to Algorithm 1, and derive the probability that
the algorithm returns something.

Proposition 1.3.21. Asymptotically, the cost of ISD is O (tSolve/p
∗
ISD(w)) .

Proof. The probability that a call to Algorithm 1 returns a non empty set Y is p∗ISD(w).
So, on average, 1/p∗ISD(w) calls are required before at least one of the codewords in Cw is
returned.

Two very interesting ISD variants are those proposed by Lee and Brickell [LB88], and
by Stern [Ste89]. Notice that, at least for the binary case, more advanced algorithms exist
(e.g., MMT [MMT11] and BJMM [Bec+12]). However, they have space complexity (i.e.,
amount of used memory) which is typically much larger than that of Stern. Also, they do
not have a non binary counterpart: so, to avoid distinguishing between the binary and non
binary cases, we will omit them from our analysis. Below we report the main results for
Lee&Brickell and Stern. Crucial quantities in our analysis will be the success probability,
namely, the probability that a given permutation π is successful for an ISD algorithm. In
particular, we show that, as long as we do not consider a specific code, the probability
that a chosen permutation is valid will only be a function of (i) the weight w, and (ii) the
constraints which are imposed by the considered ISD variant.
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Lee & Brickell’s ISD

In Lee & Brickell algorithm (LB for short) [LB88] the tacit assumption is that there exists
at least one codeword with p non null components in a given information set I. We de-
scribe the algorithm taking into account its three main building blocks, namely the partial
Gaussian elimination part, the resolution of the small instance, and the finalization phase.
The Gaussian elimination is performed with ℓ = 0 and can be considered a degenerate case
of the general procedure. In the LB case, once this first phase is finished, the structure of
the resulting matrix will be as follows:

H′ =
(
B In−k

)
, (1.6)

where B ∈ F(n−k)×k
q . Given this, solving the small instance and producing the solution

is straightforward: LB assumes the existence of a codeword of weight w with p nonzero
components in the first k positions of the permuted code described by H′. Let c be such
a codeword. We have that π(c) = (c′, c′′), with w(c′) = p and w(c′′) = w − p, so that

cH⊤ = 0⇐⇒ π
(
cH⊤

)
= 0

⇐⇒ π(c)π(H⊤) = 0

⇐⇒
(
c′, c′′

)
(B | I)⊤ = 0

⇐⇒ c′B⊤ + c′′ = 0.

Therefore, it is sufficient to enumerate all the vectors c′ of length k and weight p, and check
whether c′′ = −c′B⊤ has weight w − p. The LB subroutine is depicted in Algorithm 2.

Algorithm 2 Lee & Brickell Solve subroutine
Input : p ∈ N.
Output : set X made up of all vectors with length k and weight p

1: Set X ←
{
x′ ∈ Fk

q | x′ ∈ Vk,p

}
// Enumerate candidates for x′

2: return X

Notice that the complexity of solving this subroutine is simply given by the number of
vectors of length k and weight p, which is given by tSolve(p) =

(
k
p

)
(q − 1)p. Similarly, the

probability that, given a codeword of weight w, its permuted vector has exactly p non-null
components in the first k entries and w − p non-null components in the remaining n− k,
is given by pISD(w) =

(
k
p

)(
n−k
w−p

)
/
(
n
w

)
. Overall, the following result holds.

Proposition 1.3.22 (Performances of Lee&Brickell’s ISD). The time complexity of the
Lee&Brickell Solve subroutine, with parameter p ∈ N, 0 ≤ p ≤ min{w, k}, is

tSolve(p) =

(
k

p

)
(q − 1)p.

The probability that a codeword c ∈ Cw is returned is

pISD(w) =

(
k
p

)(
n−k
w−p

)(
n
w

) .
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Stern’s ISD

The main assumption on which this algorithm [Ste89] relies is the following: it assumes
that there exist weight w codewords in π(C) with 2p non-null entries in the first k + ℓ
positions (respectively divided into two blocks of equal length (k+ ℓ)/2 and weight p) and
w − 2p non-null entries in the rightmost n − k − ℓ positions. In particular, the algorithm
aims to find the leftmost vector using the standard collision search technique (sometimes
also called meet-in-the-middle): it creates two lists L1 and L2 through the enumeration
of V( k+ℓ

2
),p, together with their partial syndromes. The Stern’s subroutine is described in

Algorithm 3.

Algorithm 3 Stern Solve subroutine
Data : p ∈ N, p ≤

⌊
k+ℓ
2

⌋
Input : E ∈ Fℓ×(k+ℓ)

q , ℓ ∈ N.
Output : set X with solutions of the small instance, with weight 2p equally partitioned

1: // Partition E

2: Write E = (E′,E′′), where E′ ∈ Fℓ×⌊ k+ℓ
2 ⌋

q , E′′ ∈ Fℓ×⌈ k+ℓ
2 ⌉

q

3: Set L1 ←
{
(x′, x′E′⊤) | x′ ∈ V( k+ℓ

2
),p

}
4: // Enumerate candidates for x′ and x′′

5: Set L2 ←
{
(x′′,−x′′E′′⊤) | x′′ ∈ V( k+ℓ

2
),p

}
6: // Find collisions (using efficient strategy, e.g., sorting plus binary search)

7: Compute X, the set of all pairs (x′, x′′) ∈ V( k+ℓ
2

),p×V( k+ℓ
2

),p such that x′E′⊤ = −x′′E′′⊤

8: return X

As it is well known, the merge can be efficiently computed using a sort plus binary
search approach, taking time

O
(
max {|L1| · log2 (|L1|) , |L2| · log2 (|L2|)}

)
.

Notice that the lists have sizes given by

|L1| =
(⌊k+ℓ

2

⌋
p

)
(q − 1)p,

|L2| =
(⌈k+ℓ

2

⌉
p

)
(q − 1)p.

Getting rid of the logarithmic factor, and taking into consideration that the resulting list
C needs to be somehow allocated, we can consider that the overall cost of merging the two
lists is given by

O
(
max {|L1|, |L2|, |C|}

)
.

When L1 and L2 are formed by elements without any relevant structure, we can safely
consider that each pair of elements in L1 and L2 results in a collisions with probability
q−ℓ. This is a frequently employed heuristic, which corresponds to the assumption that
each entry in the associated syndromes is uniformly distributed over Fq. In such a case,
we can set

|C| = |L1| · |L2| · q−ℓ

For the sake of simplicity, we can neglect the floors and ceiling. This way, we have |L1| =
|L2| = L =

( k+ℓ
2
p

)
(q − 1)p and |C| = L2q−ℓ. This way, the cost of the overall subroutine

Solve becomes
tSolve = L

(
2 + Lq−ℓ

)
.
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Similarly, the probability that, given a codeword of weight w, its permuted vector has
exactly 2p non-null components in the first k + ℓ entries, distributed as described above,
and w − 2p non null components in the remaining n− k − ℓ positions, is given by

pISD(w) =

(
(k+ℓ)/2

p

)2(n−k−ℓ
w−2p

)(
n
w

) .

In particular, the following result holds.

Proposition 1.3.23 (Performances of Stern’s ISD). The time complexity of the Stern’s
Solve subroutine, with parameters p, ℓ ∈ N, where 0 ≤ p ≤

⌊
k+ℓ
2

⌋
, 0 ≤ ℓ ≤ n− k and such

that 2p ≤ w ≤ n− k − ℓ+ 2p is

tSolve(p, ℓ) = L2/qℓ + L,

where L =
( k+ℓ

2
p

)
(q − 1)p. The probability that a codeword c ∈ Cw is returned is

pISD(w) =

(
(k+ℓ)/2

p

)2(n−k−ℓ
w−2p

)(
n
w

) . (1.7)

As a final remark, we recall that ISD algorithms should not be considered as attacks in
the classical sense. Instead, as they define the state-of-the-art regarding random decoding,
they determine the choice of parameters for a given protocol, once fixed a desired security
level.

1.3.4 Code-Based Digital Signature Schemes
Code-based digital signature schemes can be divided into two variants. On the one hand,
there are schemes based on proofs of knowledge, which in turn can follow the Fiat-
Shamir [FS87b] or the Schnorr-Lyubashevsky [Lyu09] approach, while on the other side
there are schemes following the hash&sign paradigm.

The schemes following the first approach follow a work by Goldwasser, Micali and Rackoff
[GMR19] which dates back to 1985, where the concept of zero-knowledge proof is intro-
duced for the first time. Following this work, Fiat and Shamir built the first protocol
[FS87b] that exploits this kind of proofs. From here, the zero-knowledge protocols have
been declined in various versions, including that of the codes. The first one who worked
in this direction was Stern, who proposed the first draft of a code-based Sigma protocol
[Ste90], and a more practical version [Ste01] some years later. Several variants of this
scheme have been proposed over the years: in 1997 Véron introduced a dual version of
the scheme proposed by Stern [Vér97], and in 2010, together with other researchers, they
proposed a scheme [CVA10] in which the instantiated code lies in Fq and no more in a
binary field. However, we have to wait until 2020 to have some truly competitive ZKID
code-based digital signature proposals [Bia+20]. Recently, the development of these pro-
tocols is going in some new directions, for example trying to improve these schemes with
the “cut and choose” technique [GPS22; FJR23], or combining the theory of multiparty
computation [FJR23; FJR22], or other techniques [CROSS], such as the seed tree, the
multiple public key, and the fixed weight ones. We refer the interested reader to [Bor+23]
for further details.
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Differently from this first family, digital signature schemes which follow a hash&sign
approach have had a more tumultuous development during the last years. Among the
schemes, CFS [CFS01; Dal07] and KKS [KKS97] were the first to be introduced. The
idea behind both schemes is the same: the digest of a message to be signed is considered
as a corrupted codeword (more precisely, it is considered as a syndrome of a corrupted
codeword) c + e for a certain codeword c ∈ C and a small-weight error e, and the owner
of the private key is the only one capable of decoding, i.e. capable of finding e. The main
difference between CFS and KKS is that in the first the digest is considered as a random
syndrome, leading to an inefficient scheme, while the latter manipulates the digest to out-
put a decodable syndrome, leading to a very efficient but insecure scheme [OT11]. In order
to mitigate the efficiency issues of CFS, some authors have proposed CFS-like schemes in
which the hash function is substituted with a map whose output is a syndrome with small-
weight coset-leader, mixing some ideas behind both CFS and KKS. This approach has been
adopted e.g. in [RZW+17], where the authors utilize a hash function based on the works
of Augot, Finiasz and Sendrier [AFS05] and on the Merkle-Damgard construction [Dam89;
Mer89]. This promising approach has however been proved to be insecure in [DMP21]. An
important thing to notice is that in order for these schemes to work it is necessary that
the underlying code has a particular structure which make the decoding phase efficient.
For example, the CFS scheme uses high rated Goppa codes. This usually leads to a big
problem regarding the security assumptions, indeed on one hand we assume the difficulty
of solving SDP, but on the other one we also have to assume the indistinguishability of the
underlying structured codes from a random linear one. This second assumption is much
more delicate, and often turns out to be false. In this regard, a distinguisher for high-rated
Goppa codes has been build recently [Fau+13], making the CFS scheme formally unsecure.
In 2014 it is the time of RankSign, where the main idea is to leave the Hamming metric
and work with the rank one, using augmented LRPC codes. However, even in this case
there has been a structural attack [DAT18]. During the last years there have been differ-
ent attempts to build similar digital signature schemes [Bal+13; Per18; Gab+14; Kim+22;
Rit+23; FRX+17; Son+20; LXY20; PMT22] but it seems that the cryptographic com-
munity is far from achieving a trustable proposal [PT16; SBC19; Xag18; DG20; HW24;
Ara+21; Bal+21b; PT23]. In this context, a remarkable hash&sign code based digital sig-
nature scheme that still remains unbroken is Wave [DAST19], which has been proposed in
2019 and relies on the indistinguishability of the normalized generalized (U,U +V ) codes.
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Construction

Regarding the evolution of code-based digital signature schemes following the hash&sign
paradigm, the framework that we have outlined at the end of the previous chapter is quite
turbulent. A question that naturally arises in this context is the following.

Is there a way to build a code-based Hash&Sign
digital signature scheme that is both secure and efficient?

In this chapter, we try to approach this question: we propose a post-quantum code-
based digital signature algorithm whose security is based on the difficulty of decoding
Quasi-Cyclic (QC) codes in systematic form, and whose trapdoor relies on the knowledge
of a hidden Quasi-Cyclic Low-Density-Parity-Check (QC-LDPC) code. QC codes allows us
to balance between security and key size, while the LDPC property lighten the encoding
complexity, thus the signing algorithm complexity, significantly. Unfortunately, we are
unable to answer this question in the affirmative: recently, the scheme we proposed suffered
a critical attack that strongly limits its usefulness. We describe the rise and fall of this
scheme in the following section.

2.1 A Post-Quantum DSA from QC-LDPC Codes
We start by recalling some elementary results on QC-LDPC codes, then moving on to
expose our proposed signature scheme, discussing the general idea, its correctness, the
parameters’ choice, its security, and some experimental results. We then describe the
attack we suffered, and finally state some conclusive remarks.

2.1.1 Basics on QC-LDPC Codes
Below we define Low-Density Parity-Check codes as well as Quasi-Cyclic codes. The
purpose of this subsection is to establish the notation and state the computational problems
from which we tried to build our scheme. For a more detailed treatment on this subject,
the interested reader is referred to [Bal14].

LDPC Codes

Low-Density Parity-Check codes were first introduced by Gallager [Gal62] in the early
1960s and rediscovered by MacKay [MN97] in 1996. The idea of LDPC codes is to have a
parity-check matrix that is sparse.
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Definition 2.1.1 (LDPC Codes). A code C is called Low-Density Parity-Check (LDPC)
if it admits a sparse parity-check matrix H. Informally, H is considered sparse if, for each
row, the number of non-zero elements is logarithmic with respect to the length of the row
and, for each column, the number of non-zero elements is logarithmic with respect to the
length of the column.

In addition to describing error-correcting codes based on Low-Density Parity-Check
matrices, Gallager also presented several practical decoding algorithms [Gal62]. One of
these is called the Bit-Flipping algorithm, which corrects errors by iteratively flipping bits
that contribute most to unsatisfied parity checks. The algorithm operates as follows:

1. The syndrome is computed by checking which parity-check equations are satisfied.
Each parity-check equation corresponds to a row in the parity-check matrix, and an
unsatisfied equation indicates an error in one or more of its associated bits.

2. For each iteration, bits contributing to the highest number of unsatisfied parity checks
are identified as the most likely to be in error. These bits are “flipped” (i.e., their
values are inverted) to correct potential errors.

3. The process is repeated iteratively until all parity-check equations are satisfied (indi-
cating successful decoding) or until a maximum number of iterations is reached. In
the later case we have a decoding failure.

According to this, LDPC codes are interesting from a cryptographic stand point, as
they have no algebraic structure which might be detected by an attacker, but nevertheless
have efficient decoding algorithms.

QC Codes

A cyclic code is a block code, where the circular shifts of each codeword gives another word
that belongs to the code. Quasi-Cyclic codes are a generalization of this family of codes,
as the following definition points out.

Definition 2.1.2 (Quasi-Cyclic Codes). View a vector c = (c0, . . . , cs−1) of Fsn
2 as succes-

sive blocks of n-uples. An [sn, k] linear code C is Quasi-Cyclic (QC) of index s if, for any
c = (c0, . . . , cs−1) ∈ C, the vector obtained after applying a simultaneous circular shift to
every block c0, . . . , cs−1 is also a codeword.

In the following, we present a useful object to better understand this family of codes.

Definition 2.1.3 (Circulant matrix). Let a = (a0, . . . , an−1) ∈ Fn
2 . The circulant matrix

induced by a is defined as follows:

circ(a) :=


a0 an−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
an−1 an−2 · · · a0

 ∈ Fn×n
2 .

Consider the quotient ring R := F2[x]/(x
n − 1) of all polynomials over F2 of degree

less than n. Given a polynomial a(x) ∈ R we denote by a ∈ Fn
2 the vector whose co-

ordinates are the coefficients of a(x), namely, if a(x) = a0 + a1x + · · · + an−1x
n−1 then

a = (a0, a1, . . . , an−1). Due to this bijection, with some abuse of notation, we will denote
in the same way (say a) both an element a(x) ∈ R and its associated vector a ∈ Fn

2 . The
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meaning of the underlying object will always be clear from the context. Consider two
elements a and b in R. Their product c ∈ R is the polynomial a · b and c is obtained by
the formula c⊤ = circ(a) · b⊤, where circ(a) is the n× n circulant matrix obtained from a.
Notice that

a · b = a · circ(b)⊤ =
(
circ(b) · a⊤

)⊤
= b · circ(a)⊤ = b · a.

In this new context, multiplying an element a ∈ R by x is equivalent to performing a
circular shift of a by one position to the right. According to this fact, the characterization
of Quasi-Cyclic codes as polynomials over R allows us to provide an alternative definition
for this family of codes.

Definition 2.1.4 (Quasi-Cyclic Codes - alternative). View a vector c = (c0, . . . , cs−1) of
Fsn
2 as a successive blocks of n-uples, and consider each ci as a polynomial in R. An [sn, k]

code C is Quasi-Cyclic (QC) of index s if for any c = (c0, . . . , cs−1) ∈ C it holds that
(x · c0, . . . , x · cs−1) ∈ C.

In the following, we will mainly work with Quasi-Cyclic codes in systematic form, for
which we provide the relative definition below. Note that arbitrary QC-codes are not
necessarily equivalent to a systematic QC-code.

Definition 2.1.5 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code
of index s and rate 1/s is a quasi-cyclic code which admits a (s − 1)n × sn parity-check
matrix of the form:

H :=


In 0 · · · 0 A0

0 In · · · 0 A1
...

...
. . . 0

...
0 0 · · · In As−2

 ∈ F(s−1)n×sn
2 , (2.1)

where A0, . . . ,As−2 are n× n circulant matrices.

In the following, we work with 2-Quasi-Cyclic codes (2-QCC) in systematic form over
F2, which are a particular family of binary codes of length 2n and dimension n. For
these codes, the parity-check matrix is of the form (In | circ(h)) for some vector h ∈ Fn

2 .
In particular, our scheme exploits the properties of 2-QCC whose parity-check matrices
are sparse. That is, 2-Quasi-Cyclic Low-Density Parity Check codes. In the NIST Post-
Quantum standardization process there were proposals for encryption schemes (e.g. BIKE
[Ara+17], LEDAcrypt [Bal+19] and HQC [Mel+18a]) based on the same coding problems
on which we base our protocol, but to date there are still no proposals for a signature
scheme which exploits these ideas. Using QC codes allows us to have smaller keys because
our parity-check matrix, which is public of dimension n× 2n, can be described using only
n bits, while the LDPC property, on which our trapdoor relies, is important from an
implementation point of view, as the computation using sparse matrices speeds up the
signing algorithm significantly.

Since we do not work with random-like linear codes, when we describe the security of
the scheme we will refer to the following problems.

Definition 2.1.6 (s-QCCFP). The s-Quasi-Cyclic Codeword Finding Problem (s-QCCFP)
is the computational problem which takes as input a parity-check matrix H ∈ F(sn−n)×sn

2

of a systematic QC code C of index s, a list of non-negative integers w0, . . . , ws−1, and
asks to find x = (x0, . . . , xs−1) ∈ Fsn

2 such that Hx⊤ = 0, with w(xi) = wi for every
i ∈ {0, . . . , s− 1}.
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Definition 2.1.7 (s-QCSDP). The s-Quasi-Cyclic Syndrome Decoding Problem (s-QCSDP)
is the computational problem which takes as input a parity-check matrix H ∈ F(sn−n)×sn

2

of a systematic QC code C of index s, a vector y ∈ Fsn−n
2 , a list of non-negative inte-

gers w0, . . . , ws−1, and asks to find x = (x0, . . . , xs−1) ∈ Fsn
2 such that Hx⊤ = y⊤, with

w(xi) ≤ wi for every i ∈ {0, . . . , s− 1}.

It is still under investigation whether these problems are difficult, but the cryptographic
community seems to agree in this direction, as there are well-established schemes whose
security is based on this assumption [GG07; Mel+18b]. Although these problems are
considered difficult, we must still take into account the best solvers that currently exist to
solve a given instance. In this regard, the best known attacks are still exponential, but
it is possible to exploit the cyclic structure in order to have a polynomial speed-up factor
compared to an attack we could mount on a random code. In the following, we derive the
speed-up factor. Suppose that C is a QC code with parity check matrix H defined as in
Eq. (2.1). If we find a solution vector c = (c0, . . . , cs−1) such that Hc⊤ = 0 and w(ci) = wi,
where ci are vectors of length n, then we can circularly shift each ci by the same number
of elements and find another vector that is still a solution of our problem. To be precise,
if we define the shift function as

sh : Fn
2 Fn

2

(v0, . . . , vn−1) (vn−1, v0, . . . , vn−2)
,

and c = (c0, . . . , cs−1) is a solution of the CFP, then (sh(c0), . . . , sh(cs−1)) is still a solution.
According to this, we conclude that if at least one solution exists, then there are at least
n solutions, where n is the size of the circulant matrices. In each iteration of ISD, the
probability of success is increased by a factor of n, so the algorithm speeds up by the same
factor. Similar reasoning is used for the SDP. These problems share a lot of similarities
with the Decoding One Out of Many (DOOM) problem [Sen11], which can be stated in its
full generality as follows.

Definition 2.1.8 (DOOM Problem). The Decoding One Out of Many Problem takes as
input a triple (H, S, w), where H ∈ F(n−k)×n

q is a parity check matrix of some code, S is a
set of syndromes and w is a non-negative integer. The problem asks us to find x such that
w(x) ≤ w and Hx⊤ ∈ S.

In fact, solving the SDP with QC codes has the same complexity as solving the DOOM
problem. For the sake of simplicity, we consider the case in which the QC code used has
index 2. Let H ∈ Fn×2n

2 be a parity check matrix of some systematic QC code of index 2, so
that H = (In | A), where A is an n×n circulant matrix. Let s be the syndrome. Our prob-
lem asks us to find a vector x = (x0, x1) such that Hx⊤ = s⊤ and x respects the constraint
on the weight. Notice that if we denote H′ = (In | A | In), then we have H′(x0, x1, s)

⊤ = 0.
It is straightforward to note that H′(sh(x0), sh(x1), sh(s))⊤ = 0, which means that (x0, x1)
is a solution for the SDP with syndrome s if and only if (sh(x0), sh(x1)) is a solution for
the SDP with syndrome sh(s). Thus, if we are able to find a solution x′ = (x′0, x

′
1) for SDP

with syndrome sh(s) then we can easily find the solution for SDP with syndrome s. We
can conclude that instead of directly solving the SDP we can solve the DOOM problem
with S the set of all possible circular shifts of the initial syndrome s and then retrieve
the solution we are looking for. The DOOM algorithm is well explained in its original
paper [Sen11] and achieves a speed-up factor of

√
n (where n is the dimension of the cir-

culant blocks) with respect to ISD algorithms working with the general version of the SDP.
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In particular, the scheme we propose always deals with 2-QC codes. We adapt the as-
sociated problems below.

Definition 2.1.9 (2-QCCFP). The 2-Quasi-Cyclic Codeword Finding problem (2-QCCFP)
is the computational problem that takes as input a matrix H = (In | circ(h)) ∈ Fn×2n

2 , for
some h ∈ Fn

2 , two non-negative integers w1, w2, and asks to find x = (x1, x2) ∈ F2n
2 such

that Hx⊤ = 0, with w(x1) = w1 and w(x2) = w2.

Definition 2.1.10 (2-QCSDP). The 2-Quasi-Cyclic Syndrome Decoding Problem (2-
QCSD) is the computational problem that takes as input a matrix H = (In | circ(h)) ∈
Fn×2n
2 , for some h ∈ Fn

2 , a vector y ∈ Fn
2 , two non-negative integers w1, w2, and asks to

find x = (x1, x2) ∈ F2n
2 such that Hx⊤ = y⊤, with w(x1) ≤ w1 and w(x2) ≤ w2.

2.1.2 The Scheme
In the following, we present our proposal for a digital signature scheme involving QC-LDPC
codes.

Setup. The parameters of the scheme are:

• n, the dimension of the vector space Fn
2 . It is a prime number such that 2 is a

primitive root modulo n;

• the weights w,wpq, wr, where ω, ωpq, ωr are integers smaller than n, wpq is odd and
wr is even;

• two intervals I and It;

• Hωr , a hash function whose digests have weight ωr over Fn
2 .

In the following, we describe the key generation algorithm KeyGen, the signature al-
gorithm Sign and the verification algorithm Vf. We assume that the global parameters
(n, ω, ωpq, ωr, I, It, Hωr) are known to anyone and we do not specify them as input to the
algorithms.

Key Generation. The Key Generation algorithm KeyGen is the following.

Algorithm 4 Key generation algorithm KeyGen

Input ∅
Output (pk, sk)

1: Generate randomly e1, e2 ∈ R := F2[x]/(x
n − 1), with w(e1) = w(e2) = ω

2: Generate randomly p, q ∈ R, with w(p) = w(q) = ωpq

3: Define h := pq−1

4: Define s := e1 + he2
5: Output the public key pk = (h, s) and the private key sk = (e2, q)

Note that the actual secret key is sk = (e2, q) but we want to keep (e1, p) secret as well,
although they are ephemeral and their knowledge is not required in the signature phase,
because if an attacker can retrieve p or e1, then it can retrieve at least part of the secret
key sk.
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Signature Algorithm. The signing algorithm Sign is as follows.

Algorithm 5 Signature algorithm Sign

Input m, pk, sk
Output A valid signature σ for m under pk and sk

1: Generate the following values:

• r := Hωr(m, pk, nonce), where nonce is a randomly chosen bitstring

• t ∈ R such that w(t) ∈ It

• α := qt+ re2 and β := αh+ sr. If w(α) or w(β) do not lie in I then change the
nonce and repeat the signing phase

2: Output the signature σ = (α, nonce)

Verification Algorithm. The verification algorithm Vf is as follows.

Algorithm 6 Verification algorithm Vf

Input m,σ, pk
Output Accept/Reject

1: Compute r := Hωr(m, pk, nonce) and β := αh+ sr
2: Check that both w(α) and w(β) lie in I
3: If these conditions are satisfied outputs Accept, otherwise Reject

Correctness

In the following, we deal with the correctness of the scheme. During the setup phase, we
put some constraints on our parameters, namely, we required n to be a prime such that 2 is
a primitive root modulo n, and wpq to be odd. These choices are linked to the invertibility
of q in the ring R. In particular, with this choice of parameters, q will always be invertible,
as a direct consequence of the following facts.

Definition 2.1.11 (n-th cyclotomic field). Let n be a positive integer. The splitting field
of xn − 1 over a field K is called the n-th cyclotomic field over K and is denoted by K(n).
The roots of xn − 1 in K(n) are called n-th roots of unity over K and the set of all these
roots is denoted by E(n).

It is well known that if the characteristic of the field K does not divide the positive
integer n, then E(n) is a cyclic group of order n. In this case, a generator of the cyclic
group E(n) is called a primitive n-th root of unity over K.

Definition 2.1.12 (n-th cyclotomic polynomial). Let K be a field of characteristic p, n a
positive integer not divisible by p, and ζ a primitive n-th root of unity over K. Then, the
polynomial

ϕn(x) :=

n∏
s=1

(s,n)=1

(x− ζs)

is called the n-th cyclotomic polynomial over K.
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It is well known that if K is a field of characteristic p and n is a positive integer not
divisible by p, then

xn − 1 =
∏
d|n

ϕd(x) ,

where ϕd(x) is the d-th cyclotomic polynomial. Furthermore, the following result [LN97]
holds.

Proposition 2.1.13. Let Fq be a finite field. If n is an integer such that (n, q) = 1, then
ϕn(x) factors into φ(n)/d distinct monic irreducible polynomials in Fq[x] of the same degree
d, F(n)

q is the splitting field of any such irreducible factor over Fq, and [F(n)
q : Fq] = d, where

d is the least positive integer such that qd ≡ 1 (mod n).

As we are working with R = F2[x]/(x
n +1) = F2[x]/(x

n − 1) , since n is prime, xn − 1
factors as ϕ1(x)ϕn(x) where both ϕ1(x) and ϕn(x) are irreducible in F2[x]. To prove this,
note that the latter factors into ϕ(n)/d irreducible polynomials where d is the order of 2
modulo n. Since we have chosen n such that 2 is a primitive root modulo n, we have that
d = n − 1 = φ(n). As a consequence, an element in R is invertible if and only if it is
not divisible by ϕ1(x) and by ϕn(x), but in R the only element divisible by ϕn(x) is itself,
thus an element different from ϕn(x) is invertible in R if (and only if) it is not divisible by
ϕ1(x) = x+ 1.

Proposition 2.1.14. Let f ∈ R. If f is divisible by x+ 1, then w(f) is even.

Proof. Let f be divisible by x + 1, so that we can write f = (x + 1)f1. Notice that
f(1) = (1 + 1)f1(1) = 0 (mod 2), so that f must have an even number of coefficients
different from zero. Said otherwise, w(f) is even.

According to these results, if we execute the protocol honestly, q will always be invertible
in R.

Remark 2.1.15. Notice that it is possible to create hash functions which produce words
of weight wr, indeed Hωr could work in the following way. Let H be a cryptographically
secure hash function with digest of 256 bit, and let n,wr be the parameters defined in
the setup phase. The goal of this function is to output a list of wr integers in the range
[1, N ], which will be the positions of the ones of the digest message. First, Hωr computes
m̄ = (m, nonce) and defines H1 = H(m̄). In order to have a number less or equal than
N we need l = ⌈log2(N)⌉ bit, so the algorithm takes the first l bits of H1 and, if the
number associated with is in [1, N ], it will denote the position of the first one, otherwise
it will discard the number. Following this pattern, the algorithm takes the second l bits,
do the same as before, and so on. If it can no longer take l bits, the algorithm computes
H2 = H(H1) and continues until it has generated wr different integers.

To prove the correctness of our scheme, we need the following preliminary result, whose
proof can be found in [Mel+18a].

Proposition 2.1.16. Let v = (v0, . . . , vn−1) be a random vector chosen uniformly among
all binary vectors of weight ωv and let u = (u0, . . . , un−1) be a random vector chosen
uniformly among all vectors of weight ωu and independently of v. Then, denoting z = u ·v,
we have that for every k ∈ {0, . . . , n−1}, the k-th coordinate zk of z is Bernoulli distributed
with parameter p̃ = P (zk = 1) equal to:

p̃ =
1(

n
wv

)(
n
wu

) ∑
1≤l≤min(wv ,wu)

l odd

Cl ,
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where Cl =
(
n
l

)(
n−l
wv−l

)(
n−wv

wu−l

)
.

As a consequence, in the following corollary we derive the probability distribution of
the polynomials α and β.

Corollary 2.1.17. Using the previous notation, α and β has the same weight distribution.
In particular, α and β are distributed as a Binomial with parameter p∗ = p1(1 − p2) +
p2(1− p1), where

p1 =
1(

n
wpq

)(
n
wt

) ∑
1≤l≤min(wpq ,wt)

l odd

(
n

l

)(
n− l

wpq − l

)(
n− wpq

wt − l

)
,

p2 =
1(

n
wr

)(
n
w

) ∑
1≤l≤min(wr,w)

l odd

(
n

l

)(
n− l

wr − l

)(
n− wr

w − l

)
.

Proof. Consider α = q · t+ r · e2 and let p1 = P((q · t)i = 1). Recall that w(q) = ωpq and
w(t) = ωt ∈ It. Using proposition 1 we have that:

p1 =
1(

n
ωpq

)(
n
ωt

) ∑
1≤l≤min(ωpq ,ωt),

l odd

(
n

l

)(
n− l

ωpq − l

)(
n− ωpq

ωt − l

)
.

If we define p2 = P((r · e2)i = 1) with w(r) = ωr and w(e2) = ω, using proposition 1 we
have that:

p2 =
1(

n
ωr

)(
n
ω

) ∑
1≤l≤min(ωr,ω),

l odd

(
n

l

)(
n− l

ωr − l

)(
n− ωr

ω − l

)
.

Let p∗ = P(αi = 1). We have that:

p∗ = P((q · t+ r · e2)i = 1)

= P((q · t)i = 1)P((r · e2)i = 0) + P((q · t)i = 0)P((r · e2)i = 1)

= p1(1− p2) + (1− p1)p2.

We can conclude that the weight distribution of α is a Binomial of parameter p∗. If we
consider β we have the following:

β = h · α+ s · r
= h · q · t+ h · r · e2 + r · e1 + r · h · e2
= p · q−1 · q · t+ p · q−1 · r · e2 + r · e1 + r · p · q−1 · e2
= p · t+ r · e1.

We have just to observe that β has the same form as α, w(p) = w(q) = ωpq and w(e1) =
w(e2) = ω, then the thesis follows.

According to Corollary 2.1.17, the public parameters n,w,wpq, wr and It determine the
probability distribution of the weight of α and β, and thus we can find an interval I such
that, if the scheme is executed honestly, the failure probability is negligible.
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Security

In the following, we discuss some techniques that an hypothetical attacker might try to
exploit to forge a new signature or to obtain the private key, proving that the success
of these attacks is linked to the solutions of problems which are known to be difficult.
According to this, we start by analyzing some key recovery and forgery attacks, ending
with a discussion of the role of t.

Key Recovery from s. Regarding the relationship between private and public keys,
notice that s satisfies the linear equation s = e1 + he2, which can be written as

s⊤ =
(
In | circ(h)

)(e1⊤
e2

⊤

)
,

where e1 and e2 are two vectors of weight w(e1) = w(e2) = ω.
Note also that if an attacker can retrieve (e1, e2) from s and also has access to a valid

signature (α = qt + re2, nonce), then it can produce a forgery. In fact, from α it can
compute qt and then select a message m′, computing r′ such that α′ = qt+ r′e2 is a valid
signature for m′. However, the problem of finding e1, e2 from s is related to the 2-QCSDP.
In our case, the parity-check matrix is given by H = (In | circ(h)) and we have to take
into consideration the sparsity of the matrix if we aim to fully understand the security of
the scheme. In fact, if H is a sparse matrix, then the dual of the code generated by H
is an LDPC code and in that case it is well known that the SDP, and therefore the 2-
QCSDP, can be solved in polynomial time [Gal62]. However, under the assumption that h
is indistinguishable from a randomly chosen vector (of odd weight) over Fn, the 2-QCSDP
does not seem to be efficiently solvable. Notice that the indistinguishability of h from a
random vector is assumed to be true also in well-known works (e.g., BIKE [Ara+17] and
LEDAcrypt [Bal+19]). The fact that with very high probability H = (In | circ(h)) is not
a sparse matrix allows us to conclude that if we could solve the problem of finding (e1, e2)
from s = e1 + he2, then we could solve an instance of the computational 2-QCSDP, which
is believed to be difficult to solve. Therefore, breaking the scheme in this way does not
seem to be a viable option.

Key Recovery from h. Here we consider the possibility to exploit the knowledge of
h, together with the information h = pq−1, to retrieve p and q. A way to try to retrieve p
and q is the following: construct the matrix M :=

(
In | circ(h)⊤

)
and notice that

q ·M = (q0, q1 . . . , qn−1) ·


1 0 · · · 0 h0 h1 h2 · · · hn−1

0 1 · · · 0 hn−1 h0 h1 · · · hn−2
...

...
. . . 0

...
...

...
. . .

...
0 0 · · · 1 h1 h2 h3 · · · h0

 = (q, p),

so that (q, p) is a codeword of low weight of the code with generator matrix M. As a
consequence, (q, p) is a solution of an instance of the 2-QCCFP, which we assumed to be
difficult. Similarly to the previous attempt, breaking the scheme in this way does not seem
to be a viable option.

Key Recovery from a Valid Signature. Here we consider the case in which an
attacker has access to a valid signature (α, nonce) of a given message m. The attacker can
compute r and try to find the vector (qt, e2) simply by solving

α⊤ = (In | circ(r))(qt, e2)⊤.
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Observe that the matrix H = (In | circ(r)) is a sparse matrix and so the dual of the code
generated by H is an LDPC code. This tells us that the syndrome decoding related to
this code is efficiently solvable. In particular, we know an efficient algorithm that takes as
input a parity-check matrix H, a syndrome s, a weight w, and outputs a solution x such
that Hx⊤ = s⊤ and w(x) ≤ w. It is easy to observe that if someone succeeds in carrying
this attack with non-negligible probability, then, in addition to being able to steal a part
of the private key, it would be able to perform a forgery with non-negligible probability.
In the following, we prove that this attack can succeed only with negligible probability.
Notice that we know the weights of each polynomial involved in the expression (qt, e2), so
we can compute a weight wmax such that with very high probability the weight of (qt, e2)
is less than wmax. In other words, we have a reasonable weight for the SDP with matrix
H = (In | circ(r)) and syndrome α⊤. We show that, given H, α and w, the number of
vectors x that are solutions of the associated SDP are just too many to hope to find (qt, e2)
among these. Let α ∈ Fn

2 {0} be a syndrome and define Cα := {v ∈ F2n
2 | Hv⊤ = α⊤}.

Assume that the weight distribution of the elements in Cα can be approximated with a
binomial distribution with length 2n and probability p = 1/2. If we randomly extract a
vector v ∈ F2n

2 , then

P(w(v) = i) =

(
2n
i

)
22n

.

It is easy to show that |Cα| = 2n, therefore:

∣∣ {v | v ∈ Cα and w(v) ≤ wmax}
∣∣ = 2n ·

wmax∑
i=0

P
(
w(v) = i

)
= 2n ·

wmax∑
i=0

(
2n
i

)
22n

=
1

2n
·
wmax∑
i=0

(
2n

i

)
.

In conclusion, with this kind of approach and with the parameters used to instantiate the
scheme, the probability of finding the correct vector (qt, e2) among these is negligible.

Forging a Signature of a Chosen Message. In the following, we consider the
case where an attacker is interested in making a forgery with the only knowledge of the
public key. To produce a forgery of a given message, an adversary is required to determine
two values α and β such that their weights lie in the interval I. According to the previous
subsections, a valid user is capable of producing with non-negligible probability a signature
due to the knowledge of the private key. On the other hand, an adversary capable of
producing a forgery is also capable of solving the problem{

w(αh+ sr) ∈ I

w(α) ∈ I
. (2.2)

Notice that the adversary has no control over the value of r because this is the digest
of a cryptographically secure hash function. If an attacker can find a correct triple (α, β, r)
that satisfies the verification phase, it is still necessary to find a message m such that
Hωr(m, pk, nonce) = r. This means that the attacker is able to invert a hash function, but
this is computationally unfeasible. On the other hand, a signature generated differently
would not be linked to any known message with overwhelming probability. According to
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this, an attacker can choose a message m, compute r = Hωr(m, pk, nonce), and only then
try to find α and β such that Eq. (2.2) is satisfied. If we denote by ωmax the greatest
integer that is still in the interval I, finding α and β is equivalent to solving the following
problem. 

(sr)⊤ =
(
In | circ(h)

)(β⊤

α⊤

)
w(α) ≤ ωmax

w(β) ≤ ωmax

.

As before, this is an instance of 2-QCSDP, which we assumed to be difficult, thus
suggesting that breaking the scheme in this way is not feasible.

The usage of t. Notice that it is mandatory to use the ephemeral value t just once. As
usual for such signatures, it would be a dab idea to send different messages using the same
ephemeral key. In our case we would end up with two signatures (α1, nonce1), (α2, nonce2)
such that {

α1 = qt1 + r1e2

β1 = hα1 + sr1
and

{
α2 = qt1 + r2e2

β2 = hα2 + sr2
,

from which it immediately follows that α1+α2 = (r1+r2)e2. If (r1+r2) was invertible than
we could compute (α1 + α2)(r1 + r2)

−1 and find e2. However, this attack is not possible
because r1 + r2 is always non-invertible in our framework. Indeed, a simple argument on
the weights of r1, r2 and their sum shows that r1 + r2 is invertible in R if an only if only
one of the two addends is invertible, as shown below.

Proposition 2.1.18. Let r1, r2 ∈ R. The sum r1 + r2 is invertible if and only if r1 is
invertible (non-invertible) and r2 is non-invertible (invertible).

Proof. Suppose that r1+r2 is invertible. Then, there exists g ∈ R such that (r1+r2)g = 1.
In particular, we have r1g = r2g + 1. Suppose that r2 is invertible. In this case r2g is also
invertible, so that w(r2g) is odd, w(r2g + 1) = w(r1g) is even, and r1g is non-invertible.
The only reason this case can occur is when r1 is non-invertible. The same reasoning can
be done if we take r2 as non-invertible. Here, r2g + 1 is invertible, but r2g + 1 = r1g, and
so we have that r1 is invertible. Conversely, if the sum r1 + r2 defines a polynomial which
is non-invertible, then we have (r1 + r2)ϕn = 0, where ϕn = 1+ x+ x2 + · · ·+ xn−1 is the
n-cyclotomic polynomial. This means that r1ϕn = r2ϕn. Now, observe what happens if
we multiply some r = (r0, r1, . . . , rn−1) for ϕn:

r · ϕn = (r0, . . . , rn−1)


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 =

(
n−1∑
i=0

ri, . . . ,

n−1∑
i=0

ri

)
,

where the sum is intended modulo 2. Now, we know that if r1 is invertible, then its weight
is odd, and in this case r1ϕn = (1, . . . , 1). Similarly, if r1 is non-invertible, then its weight
is even, and r1ϕn = (0, . . . , 0). In conclusion, r1ϕn = r2ϕn holds only if w(r1) and w(r2)
has the same parity, i.e. r1 and r2 are both invertible or non-invertible.
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According to this, r1 + r2 is non-invertible if and only if r1 and r2 are both invertible
or non-invertible. Despite this, an attacker can still try to find e2 by solving the linear
system of equations generated by circ(r1+r2)e

⊤
2 = (α1+α2)

⊤. Hence, we have to consider
the number of possible solutions of that system. According to this, we limit ourselves to
consider the linear system described by circ(r)e2 + α, where α and r are known, r has
even weight, and we ask for how many e2 this system admits a solution. Notice that the
elements that are solutions of the previous system are exactly the elements that belong to
the fiber of Lr,α at zero, where

Lr,α : Fn
2 Fn

2

x circ(r)x+ α
.

Since we are interested in computing (Lr,α)−1(0) and the function x 7→ x+α is a translation
map, we can study the fiber of Lr,0 at zero. It is easy to show that Lr,0 is an homomorphism
of vector spaces, so that the First Isomorphism Theorem guarantees that there is a bijection
between the image space Lr,0(Fn

2 ) and the quotient space Fn
2/ ker(Lr,0), from which it

follows that
| ker(Lr,0)| =

|Fn
2 |

|Lr,0(Fn
2 )|

.

This computation is achievable; indeed, the rank of a circulant matrix circ(r) is equal
to n− d, where d is the degree of the polynomial (r, xn − 1), as stated below.

Proposition 2.1.19 ([Kna06]). Let r ∈ R and consider the matrix M := circ(r) ∈ Fn×n
2 .

The rank of M is of the form n− d, where d is the degree of the polynomial (r, xn − 1).

In our case xn−1 = (x+1)(1+x+ · · ·+xn−1), so the greatest common divisor between
xn − 1 and r is x+ 1. It follows immediately that d = 1 and the rank of circ(h) is n− 1.
As a consequence, | ker(Lr,0)| = 2n/2n−1 = 2, that is, it contains only e2 and the zero
element. Going back to the original problem, we have that circ(r1 + r2)e2 = α1 + α2 has
two solutions. Moreover, if e′2 is a solution, then e′2 + (1, . . . , 1) is the second solution:
Indeed, we have seen that r1 + r2 can not be invertible, so that

(r1 + r2)(e
′
2 + (1, . . . , 1)) = (r1 + r2)e

′
2 + (r1 + r2)(1, . . . , 1) = (α1 + α2) + 0 = (α1 + α2).

In conclusion, since there are only two possible solutions of that system, we must take care
of the usage of t, changing its value every time we sign a document.

Parameters

In the following, we describe the choice of the parameters for the security levels 1, 3 and
5, as required by the NIST. The choice is justified by some related experimental results.
According to the description of the setup phase, described in Subsection 2.1.2, we choose
wpq and w to have approximately half the number of bits of n. The weight of r is taken in
such a way that wr ≈ 3 log n, and It is the interval of length

√
n and centered in

√
n. This

choice allows us to compute I in such a way that it will be possible for a genuine signer to
sign efficiently and it will be unfeasible for an attacker to break the protocol. The choice
of the size of these parameters is summarized in Table 2.1.
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Parameter Size

ωpq ≈
√
n

It [⌈
√
n
2 ⌉, . . . , ⌈

2
√
n

3 ⌉]
ωr ≈ 3 log(n)
ω ≈

√
n

Table 2.1: Size of the parameters.

In Table 2.2 we define the different values for n for the standard security levels and
then describe the best attacks to our scheme.

Security level n

128 14627
192 18143
256 21067

Table 2.2: Values for the security levels.

As shown in the previous subsection, the security of h = pq−1 is strictly related to
the hardness of CFP. This problem in NP-Complete in the general case and in the case of
Quasi-Cyclic codes the attack is just slightly improved (DOOM attack [Sen11]), as shown
in the introductory subsection. In order to estimate the complexity of an attack, we used
a Python script which can be found in [BE21]. We used the same test to analyze the
security level of s = e1 + he2, which rely on the difficulty of the 2-QCSDP. The results are
summarized in Table 2.3.

n Security bits (attack to h) Security bits (attack to s)

14627 250 250
18143 277 277
21067 297 297

Table 2.3: Security bits for attacks to h and s.

The size of n may seem overestimated with respect to the security parameters, but this
is not the only point on which the security lies. We also have to take into account the
distance that the weight distribution of α has with respect to a binomial distribution with
parameters (n, 12). We know that the weight distribution of α is a binomial random variable
with parameter (n, p∗), where p∗ is computed as described in Corollary 2.1.17. Since the
weight of t is not fixed, but can vary within the range It, p∗ can also vary accordingly. In
Table 2.4 we summarize the range of p∗ and the interval I for the different security levels.
The interval I is computed in such a way that, if the signer is honest, the probability that
the weight of α and β results outside the range I is approximately 10−10.
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Security level Range of p∗ I

128 [0.38918, 0.42088] [5339, 6515]
192 [0.38549, 0.41790] [6601, 7981]
256 [0.38174, 0.41564] [7620, 9186]

Table 2.4: Ranges for α and β.

So, an attacker may try to guess an α in the range I and check if β = αh + rs also
belongs to the range I. Notice that if an attacker can find such α, then it can create a
forgery. In this case, since we do not have any constraint on the weight of h, β appears
as a totally random vector, i.e., its weight distribution is a binomial random variable with
parameters (n, 12). The security bits for this type of attack for security level 128, 192 and
256 are respectively given by 133, 196 and 256.

Notice that an attacker could try to solve the SDP related to α, i.e. it can try to find
(qt, e2) knowing that (In | circ(r))(qt, e2)⊤ = α⊤. Observe that this instance of the SDP
is easily solvable, since the associated code is an LDPC code [Gal62]. In Table 2.5 we can
observe that the total number of solutions is too large to hope that the vector v given from
the decoder is exactly the sensible information (qt, e2).

Security level pqt ωmax Number of solutions

128 0.37153 5652 ≈ 101905

192 0.37118 6977 ≈ 102333

256 0.37169 8092 ≈ 102670

Table 2.5: Attack to α. w(qt) is distributed as a binomial random variable with parameters
(n, pqt), and ωmax is such that the probability that the weight of (qt, e2) is greater than
ωmax is negligible.

At the end, we can study the hardness of forging a signature by solving the SDP
instance defined in Subsection 2.1.2. In order to do this we use the best algorithm to
attack the SDP and the complexity of these attacks can be computed using [BE21]. Since,
in this case, the parameters are very big, we could not compute the complexity of all the
attacks. Table 2.6 provides an idea about the complexity of computing a forgery in this
way.

Security level Security bits for forgery exploiting SDP

128 ≈ 7000

192 ≈ 8000

256 ≈ 9000

Table 2.6: Forgery complexity by attacking SDP.

With the above discussion, we have provided hints on the security of the scheme.
Nevertheless, this topic would have required a deeper analysis and possibly a formal security
proof that would have reduced the security of the scheme to the complexity of solving
the underlying difficult problems. Without this reduction, we left ample space for more
sophisticated attacks such as the one presented in the next subsection.
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2.1.3 A Recent Attack
One of the most delicate aspects of the scheme is the following. Notice that, according
to Corollary 2.1.17, the distribution of the Hamming weight of α and β can be modeled
as a binomial with parameter p∗ ̸= n

2 , and thus is distinguishable from the distribution of
random vectors. This feature, although fundamental to the success of the signing process,
may be linked to a possible information leakage. This peculiarity of our scheme was ex-
ploited in 2023 to mount a partial key-recovery, from which a forgery attack immediately
follows. We describe the salient moments of this attack in the following, referring the
reader to [PT23] for a comprehensive discussion.

The main point behind the attack is this: if we consider α = qt + re2 and consider
two indexes i, j ∈ {0, . . . , n − 1} such that ri−j (mod n) = 1, then P(αi = 1) depends on
whether (e2)j = 1 or (e2)j = 0.

To show this fact, consider α = qt + re2 and notice that αi = (qt)i + r(i)e2
⊤, where

r(i) denotes the i-th row of circ(r). According to this, we have that

αi = (e2)j + (qt)i +
∑

0≤ℓ≤n−1
ℓ ̸=j

ri−ℓ (mod n)(e2)ℓ.

We want to compute the distribution of the random variable αi. A first step in this
direction is to compute the distribution of the sum on the right-hand side of the equation
above. To simplify the notation, we introduce the following definition.

Definition 2.1.20. Let u, v ∈ Fn
2 be two binary vectors of length n, in such a way that

w(u) = wu and w(v) = wv. We denote by P (n,wu, wv) the probability that u · v⊤ = 1.

Notice that this probability can be easily computed from Prop. 2.1.16. Given this, we
have the following.

P

 ∑
0≤ℓ≤n−1

ℓ ̸=j

ri−ℓ (mod n)(e2)ℓ = 1

 =

{
P (n− 1, w, wr − 1) if (e2)j = 0

P (n− 1, w − 1, wr − 1) if (e2)j = 1
.

Denote p0 := P (n−1, w, wr−1), p1 := P (n−1, w−1, wr−1), and pqt := P (n,wpq, wt).
Now, suppose (e2)j = 0. In this case αi = (qt)i +

∑
ℓ̸=j ri−ℓ (mod n)(e2)ℓ and

P(αi = 1 | (e2)j = 0 ∧ ri−j (mod n) = 1) = P((qt)i +
∑
ℓ̸=j

ri−ℓ (mod n)(e2)ℓ = 1)

=pqt(1− p0) + (1− pqt)p0.

On the other hand, if (e2)j = 1, αi = 1 + (qt)i +
∑

ℓ ̸=j ri−ℓ (mod n)(e2)ℓ and

P
(
αi = 1 | (e2)j = 1 ∧ ri−j (mod n) = 1

)
= P

(
1 + (qt)i +

∑
ℓ̸=j

ri−ℓ (mod n)(e2)ℓ = 1
)

= pqtp1 + (1− pqt)(1− p1).

Numerical values for the three security levels are reported in Table 2.7.
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Security level P(αi = 1 | (e2)j = 1 ∧ ri−l (mod n) = 1) P(αi = 1 | (e2)j = 0 ∧ ri−l (mod n) = 1)

128 0.577417 0.423024
192 0.582959 0.417421
256 0.585075 0.415277

Table 2.7: Numerical values for λ ∈ {128, 192, 256}.
.

For every security level, the probabilities reported in Table 2.7 always have 0.5 as
intermediate value between them. According to this, the authors of [PT23] decided to set
a threshold value δ = 0.5 in order to attempt to distinguish the distributions. We report
in Algorithm 7 the steps which describes the attack and recovers one coordinate (e2)j of
e2. It is clearly possible to repeat the algorithm n times in order to fully recover e2.

Algorithm 7 Recovering (e2)j for j ∈ {0, . . . , n− 1}
Input A list (mu, αu, nonceu)Nu=1 of signed messages, j ∈ {0, . . . , n− 1}, δ ∈ [0, 1].
Output (e2)j .

1: Set S = 0;
2: for 1 ≤ u ≤ N do
3: Compute ru = Hωr(mu, pk, nonceu)
4: for 0 ≤ i ≤ n− 1 do
5: if rui−j mod n = 1 then
6: S = S + αi

7: end if
8: end for
9: end for

10: S = S/(N · wr)
11: if S < δ then
12: (e2)j = 0
13: else(e2)j = 1
14: (e2)j = 1
15: end if

Once the reconstruction of e2 has been successfully completed, it is possible to mount
a forgery attack, as already outlined in the previous subsections, as well as in [PT23].

As a conclusive remark, we emphasize the major issues behind this proposal. We have
only partially modeled the adversary, which has led to an attack that we had not antici-
pated. This is one of the reasons why modern cryptography is shifting towards “provably
secure” schemes. Informally, this means that, given a scheme and some reasonable as-
sumptions, it is possible to reduce the security of the scheme to the security of another
problem, typically hard to solve. In the next chapter, we focus not on the construction of
new signature schemes, but rather on the cryptanalysis of the existing ones.
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Chapter 3

Cryptanalysis

In the previous chapter, we attempted to design a digital signature scheme. In this chapter,
we look at the other side of the coin, studying the security of other signature schemes.

In the first section, we analyze the security of HWQCS, a signature scheme which aims
to address the issues of the scheme proposed in the previous chapter. In particular, we
will show that the preventive measures taken into account to counter well-known attacks
are still insufficient to make the scheme secure. Specifically, we will demonstrate how an
UF-CMA attack can be mounted, requiring only about a dozen valid signatures.

In the second section, we study the formal security of Wave, which is essentially based
on two assumptions: on the one hand, the difficulty of solving the SDP; on the other,
the indistinguishability of the structured codes used by the algorithm. We will attempt
to construct a distinguisher capable of determining whether a given input code originates
from a random distribution or from the family of codes used in Wave. Our attempt heavily
exploits the weight distribution of these codes, as Wave’s low-weight codewords have a
distribution which is different from that of a random code. Unfortunately, our attempt
will not succeed. We will then analyze the reasons for this failure.

The third section stems from the second: while attempting to construct a distinguisher
for the codes used in Wave, we found it necessary to introduce estimators that, regardless of
the outcome of the cryptanalysis, have standalone significance. We will present algorithms
for estimating the weight distribution of a random code, comparing them with what is
already available in the literature.

3.1 A Successful Cryptanalysis: HWQCS
In 2023, a new attempt to build a code-based signature scheme, called HWQCS [TP24],
has been made. HWQCS uses QC-LDPC codes with the Hamming metric and introduces
the use of high-weight errors to make the decoding problem harder for an attacker. The
construction of this scheme is designed so as to prevent other known attacks from being
effective. We wondered the following question.

Is the HWQCS digital signature scheme secure?

In this section, we answer this question in the negative, showing that the signatures of
HWQCS leak substantial information concerning the ephemeral keys and formally describe
this behavior. Furthermore, we show that for each security level, we can exploit the leakage
to efficiently reconstruct partial secret data from very few signatures, and finally mount a
universal forgery attack.
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The notation we use in this section mimics the one already introduced in the previ-
ous chapter. In particular, we let R := F2[x]/(x

k − 1) be the ring of all polynomials
over F2 of degree less than k. For a ∈ Fk

2, we denote by a(x) the unique polynomial
a(x) = a0 + a1x + · · · + ak−1x

k−1 ∈ R. Given a vector a ∈ Fk
2, we denote its j-th entry

by aj when a = (a0, . . . , ak−1) is specified, and by (a)j otherwise. Similarly, we denote
the j-th coefficient of a polynomial a(x) ∈ R as (a(x))j . As before, with some abuse of
notation, a(x) ∈ R and its counterpart a ∈ Fk

2 will be denoted with the same symbol
a, simplifying notation and exposure at the price of a little imprecision throughout our
discussion. Finally, we denote by Vk,w ⊂ Fk

2 the set of vectors of length k and Hamming
weight w.

3.1.1 The Scheme
This subsection describes the algorithms of HWQCS [TP24] for key generation KeyGen,
signature Sign and verification Vf. We assume that the global parameters k,wf , wu, we,
wc, ws, wt, R and Hωc provided in the setup are public, and we do not specify them as
input of the algorithms.

Setup. The parameters of the scheme are the positive integers k,wf , wu, we, wc, ws, wt,
the quotient ring R = F2[x]/(x

k− 1) and Hωc a hash function with fixed output Hamming
weight wc

k,wf , wu, we, wc, ws, wt Positive integers.
R The quotient ring F2[x]/(x

k − 1).
Hωc Hash function with fixed output Hamming weight wc.

Key Generation. The Key Generation algorithm KeyGen works as follows. First, two
elements f1 and f2 are randomly chosen from the set Vk,wf

. These vectors must satisfy
the condition that their associated polynomials f1 and f2 are invertible in R. Then, the
public key pk is the product of the inverse of f1 by f2. Finally, the private key sk is the
pair (f1, f2). Algorithm 8 describes the key generation process for HWQCS.

Algorithm 8 Key generation algorithm KeyGen

Input : ∅
Output : a public key pk ∈ R and a private key sk ∈ R2

1: Choose random f1, f2 ∈ Vk,wf
such that f1, f2 ∈ R are invertible

2: Compute h := f−1
1 · f2 ∈ R

3: Output the public key pk = h and the private key sk = (f1, f2)

Signature Algorithm. The signing algorithm Sign takes as inputs a message m and
the public and secret keys (pk, sk), and works as follows. It starts by randomly selecting
vectors e1 and e2 from the set Vk,we , as well as u1 and u2 from Vk,wu . Next, two auxiliary
polynomials are computed. The first is b, which depends on h, e1 and e2. The second is d,
derived from the private key components f1 and f2 along with u1 and u2. A hash function
Hωc is then applied to the message m and the values b, d, and h, producing a vector c in
Vk,wc . After, the values s1 and s2 are computed as si := uifi+cei, for i = 1, 2. Notice that,
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according to the parameters that will be chosen later, each si is obtained by multiplying
and summing sparse polynomials and, moreover, one of such polynomials is public. This
will be the starting point for our attack. The algorithm then verifies that the weights of s1,
s2, and d meet the required constraints not exceeding some threshold parameters ws and
wt. If any of these weights exceed such limitations, the algorithm restarts. The signature
σ consists of the elements (c, b, s1, s2). Algorithm 9 describes the process of generating a
signature σ for a message m using a public key pk and a private key sk.

Algorithm 9 Signing algorithm Sign

Input : m, pk = h, sk = (f1, f2).
Output : σ = (c, b, s1, s2)

1: Choose random e1, e2 ∈ Vk,we and u1, u2 ∈ Vk,wu

2: Set b := e1h+ e2h
−1 ∈ R and d = u1f2 + u2f1

3: Compute c := Hωc(m, b, d, h) ∈ Vk,wc

4: Compute si := uifi + cei for i = 1, 2
5: If w(s1) > ws or w(s2) > ws or w(d) > wt then repeat from Step 1
6: Output σ = (c, b, s1, s2)

Verification Algorithm. The verification algorithm begins by computing the polyno-
mial t using the signature (c, b, s1, s2) and the public key pk. Specifically, t is computed as
s1h+ s2h

−1 − cb. Next, a hash digest c′ ∈ Vk,wc is computed applying Hωc to the message
m and the values b, t, and h. The algorithm then checks if c = c′, the weight w(t) is less
than or equal to wt, and t ̸= 0. If all conditions are satisfied, the signature is accepted as
valid; otherwise, it is rejected. Algorithm 10 describes the process of verifying a signature
σ for a message m using a public key pk.

Algorithm 10 Verification algorithm Vf

Input : m, pk = h, σ = (c, b, s1, s2)
Output : Accept / Reject

1: Compute t := s1h+ s2h
−1 − cb

2: Compute c′ := Hωc(m, b, t, h) ∈ Vk,wc

3: If c = c′, w(t) ≤ wt and t ̸= 0, then Accept, otherwise Reject

The sets of parameters suggested for 128,192 and 256 bits of security are reported in
Table 3.1.

Security k ωf ωu ωe ωc ωs ωt

128 12539 145 33 141 31 4844 4937
192 18917 185 41 177 39 7450 7592
256 25417 201 51 191 51 10111 10216

Table 3.1: Suggested parameters for security levels 128,192 and 256 of HWQCS.

3.1.2 Information Leakage
We start by giving an overview of our attack, which serves as a motivation for the study
of the objects developed in the rest of this analysis, where we show that the signatures
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generated by the Sign algorithm of HWQCS leak a critical amount of information about
the ephemeral values e1 and e2.

Overview of the attack

The idea is to use information set decoding techniques in a simplified scenario, which
allows us to perform fast recovery of secret data, hence forge signatures. In other words,
our objective is to find error-free positions in the vector e. To this end, we apply a similar
analysis to [SBC19], which manipulates each intercepted signature in such a way that it is
possible to separate a good number of zero bits of e1 and e2 from the one bits. Furthermore,
we can carefully guess additional zero bits. Once k zero bits have been recovered, we can
perform linear algebra using a submatrix of the public matrix

H =
[
circ(h) | circ(h)−1

]
. (3.1)

to reconstruct the values e1, e2 completely. Finally, compute uifi = si−cei for i = 1, 2. At
this point it is possible to start forging valid signatures, see Subsection 3.1.3 for a detailed
explanation and Algorithm 11 for the concrete attack.

In the following, we will formally describe the behavior of the information leakage, which
will be useful in determining the necessary objects for our attack. Our analysis is identical
for both i = 1, 2, therefore we will not fix a value of i.

Statistical analysis of the information leakage

We describe the technique introduced in [SBC19] adapted to the setting of HWQCS. Let
σ = (c, b, s1, s2) be an intercepted signature where si := uifi + cei, as per Sign. We can
expose many one bits of e as follows:

• Let v ∈ Supp(c) and write

x−vsi = x−v (uifi + cei)

= x−vuifi +

1 + x−v
∑

l∈Supp(c)\{v}

xl

 ei

= ei + x−vuifi +
∑

l∈Supp(c)\{v}

xl−vei.

(3.2)

• Finally, compute
di :=

∑
v∈Supp(c)

x−vsi ∈ Z[x], (3.3)

where the sum in 3.3 is taken over Z. Notice that x−vuifi is a polynomial whose
coefficient vector is a circular shift to the left of the coefficient vector of uifi of v positions.
The same holds for xl−vei, so that for every v ∈ Supp(c), the value x−vsi is given by ei
plus some random noise, see (3.2). Therefore, we expect that the larger coefficients of di
are associated with the entries of ei equal to 1. Figure 3.1 gives a visual representation
of the information leakage for a random signature, of an instance of HWQCS for security
level 128. The same behavior happens for security levels 192 and 256.
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Figure 3.1: Information leakage of e1 of an instance of HWQCS with security parameter
128. We highlighted with blue dots the entries j for which (e1)j = 0, and with orange
asterisks the entries j for which (e1)j = 1.

From Figures 3.1, it can easily be seen that the one entries of ei (in the examples in
the figures i = 1) are pushed to the upper half of the plot, meaning that they correspond
to the higher coefficients of di. This means that, with great probability, a random entry
(di)j ∈ Z which is small enough will correspond to a zero entry (ei)j . The rest of this
subsection is dedicated to the proof of Theorem 3.1.1, which describes the behavior of the
entries of di ∈ Zk.

Theorem 3.1.1. Let u, f, e and c be random elements of R, such that w(u) = wu,w(f) =
wf ,w(e) = we and w(c) = wc, respectively. Let v ∈ Supp(c) and define

d :=
∑

v∈Supp(c)

ei + x−vuifi +
∑

l∈Supp(c)\{v}

xl−vei

 ∈ Z[x].

Assume that the random variables x−vuifi and
∑

l∈Supp(c)\{v} x
l−ve are independently dis-

tributed, as v and l vary. Then, for j ∈ [k− 1], we have that (d)j is binomially distributed
as

(d)j ∼ Bin

wc,
3∏

i=1

pi +
3∑

i=1

pi
∏

j∈[3],j ̸=i

(1− pj)

 , (3.4)

where
p1 = we/k, p2 = (1− (1− 2we/k)

wc−1)/2

and
p3 =

1(
k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf )

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Let j ∈ [k − 1]. We will analyze the distribution of (x−vsi)j for a fixed v ∈ Supp(c),
breaking down the analysis on the three summands of the last equation in (3.2), treated
as random variables. That is, we are going to compute the probability distributions
of (x−vuifi)j and of

(∑
l∈Supp(c)\{v} x

l−vei

)
j
, while we consider (ei)j to be Bernoulli

distributed with parameter ωe/n. Afterward, we will provide the explicit probability
distribution of the sum of the three random variables and describe the distribution of
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(di)j =
(∑

v∈Supp(c) x
−vsi

)
j
, where the sum is taken over Z.

The following result is useful for computing the probability distribution of the entry
(x−vuifi)j .

Lemma 3.1.2. [Mel+18a, Proposition 2.4.1] Let u, f ∈ R be random elements such that
w(u) = ωu and w(f) = ωf . Set z = uf , then for every j ∈ {0, . . . , k − 1}, we have that
(z)j is distributed as a Bernoulli random variable with parameter p = P (zj = 1) equal to:

p =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf )

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
. (3.5)

Lemma 3.1.2 provides us with a way to compute the distribution of (uifi)j .

Remark 3.1.3. Note that x−vuifi is a polynomial whose coefficient vector is a circular
left shift of the coefficient vector of uifi of v positions. Therefore, the two random variables
(uifi)j and (x−vuifi)j are identically distributed.

We move on to the distribution of
∑

l∈Supp(c)\{v} x
l−vei. We will treat (xl−vei)j as inde-

pendent random variables, as l and v vary.

Lemma 3.1.4. Let X1, X2, . . . , Xk be k independent random variables following a Bernoulli
distribution with parameter q < 1

2 and let X =
∑k

h=1Xh be their sum over F2. Then X is
Bernoulli distributed with parameter p = P(X = 1) equals to:

p =

(
1

2
− (1− 2q)k

2

)
. (3.6)

Proof. The random variable X is Bernoulli distributed with parameter recursively given
by T (k) = T (k − 1)(1 − q) + q(1 − T (k − 1)), with T (0) = 0. Our goal is to convert
this expression into a closed formula. Consider the formal power series f :=

∑∞
h=1 T (h)x

h

where we consider the real interval x ∈ (0, 1). We have that

f =

∞∑
h=1

T (h)xh

= qx+

∞∑
h=2

T (h)xh

= qx+

∞∑
h=2

(T (h− 1)(1− q) + q(1− T (h− 1)))xh

= qx+ (1− q)
∞∑
h=2

T (h− 1)xh +
∞∑
h=2

qxh − q
∞∑
h=2

T (h− 1)xh

=
∞∑
h=1

qxh + (1− q)xf − qxf

=
∞∑
h=1

qxh + (1− 2q)xf.
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We can rewrite f as

f =

∑∞
h=1 qx

h

1− x+ 2qx

=
q · ( x

1−x)

1− x+ 2qx

=
qx

(1− x) · (1− (1− 2q)x)

=
1
2

(1− x)
−

1
2

(1− (1− 2q)x)

For every constant A such that |Ax| < 1 we have that
∑∞

h=0(Ax)
h = 1/(1−Ax), therefore

we can rewrite both 1/(1− x) and 1/(1− (1− 2q)x) as formal power series, obtaining

f =
1

2

∞∑
h=0

xh − 1

2

∞∑
h=0

(1− 2q)hxh =

∞∑
h=1

(
1

2
− (1− 2q)h

2

)
xh.

We conclude that T (h) = 1
2 −

(1−2q)h

2 , as claimed.

We have all the necessary tools to be able to take a big step forward towards the proof
of Theorem 3.1.1.

Proposition 3.1.5. Let u, f, e and c be random elements of R, in such a way that w(u) =
wu,w(f) = wf ,w(e) = we and w(c) = wc, respectively. Let v ∈ Supp(c), define s := uf+ce
and consider the expression

x−vs = ei + x−vuifi +
∑

l∈Supp(c)\{v}

xl−vei.

Assume that the random variables
∑

l∈Supp(c)\{v} x
l−ve are independently distributed, as l

and v vary. Then, for j ∈ [k−1], we have that (x−vs)j is distributed as a Bernoulli random
variable with parameter p = P((x−vs)j = 1) equal to:

p =
3∏

i=1

pi +
3∑

i=1

pi
∏

j∈[3],j ̸=i

(1− pj), (3.7)

where
p1 = we/k, p2 = (1− (1− 2we/k)

wc−1)/2

and
p3 =

1(
k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf )

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Proof. Write

(d)j =

 ∑
v∈Supp(c)

x−vs


j

=
∑

v∈Supp(c)

(
x−vs

)
j
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Fix the value of v ∈ Supp(c) and consider the summand (x−vs)j . We can expand it as
in (3.2) as

(x−vs)j = (e)j + (x−vuf)j +

 ∑
l∈Supp(c)\{v}

xl−ve


j

. (3.8)

The random variable (e)j is Bernoulli distributed with parameter

p1 = we/k.

Note that (xl−ve)j and (e)j are identically distributed, as the coefficient vector of the former
is the right circular shift of the coefficient vector of the latter, by l−v positions. Therefore,
from Lemma 3.1.4 we obtain that

(∑
l∈Supp(c)\{v} x

l−ve
)
j

is Bernoulli distributed with
parameter

p2 = (1− (1− 2we/k)
wc−1)/2.

Finally, from Lemma 3.1.2 and Remark 3.1.3 we have that the random variable (x−vuf)j
is Bernoulli distributed with parameter

p3 =
1(

k
wu

)(
k
wf

) ∑
1≤l≤min(wu,wf )

l odd

(
k

l

)(
k − l

wu − l

)(
k − wu

wf − l

)
.

Bearing in mind that we are considering events over F2, the sum of the three random
variables is Bernoulli distributed with parameter

p =

3∏
i=1

pi +

3∑
i=1

pi
∏

j∈[3],j ̸=i

(1− pj),

i.e. (x−vs)j succeeds if either only one or all the three variables produce success.

At this point, the proof of Theorem 3.1.1 is straightforward.

Proof of Theorem 3.1.1. The statement directly follows from Prop. 3.1.8 and the afore-
mentioned assumptions of independence of the random variables involved in the sum.

In the settings of our attack, we are going to specialize Theorem 3.1.1 to the case where
p1 ∈ {0, 1}. This allows us to study the effect of the j-th coordinate of the vector ei on the
distribution of the j-th coordinate of di. Notice that, to have a clear understanding of the
behavior of the j-th component of d, as defined in Eq. 3.3, we needed to sum the (x−vs)j
random variables over all the v ∈ Supp(c), where in this case the events are intended over
Z. While modelling this, we made the simplifying assumption that the random variables
x−vui and

∑
l∈Supp(c)\{v} x

le are independently distributed, as v varies in the support of
c. Experimental results in support of this assumption will be provided, showing that this
assumption still manages to satisfactorily capture the behavior of d, and, more importantly,
it does not affect the outcome of the cryptanalysis. Figure 3.2 gives a visual representation
of how Theorem 1 approximates the behavior of di.
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Figure 3.2: In red (resp. dark gray) the theoretical estimates P(di)j = h | (ei)j = 0) (resp.
P(di)j = h | (ei)j = 1)), as h varies in the interval [wc], for security level 128. In orange
(resp. light gray) the associated experimental results obtained for a random instance of
HWQCS with 128 bit of security.

Recovering k zero bits of e

As mentioned in subsection 3.1.2, we aim at finding k zero entries in e. The columns of H
corresponding to the remaining k positions will constitute a square k× k matrix which, in
the case of being invertible, can be used to calculate the entire value e = (e1, e2). The idea
is to use the knowledge of the distribution of the entries (di)j , provided in Theorem 3.1.1,
and find ⌈k/2⌉ error-free positions in both the left side e1 and the right side e2 of e, adding
up to (at least) k error-free positions. We search for an optimal threshold value τ such
that the probability P((ei)j = 0 | (di)j < τ) is large enough. For our attack, we choose τ
as follows:

τ := max

{
h ∈ [wc] | we

h∑
l=0

P((di)j = l | (ei)j = 1) < 1

}
, (3.9)

i.e. the largest integer such that, for each signature, the expected number of entries j
such that (ei)j = 1 and (di)j < τ is less than 1. This means that, on average, all the
coordinates j such that ((di)j) < τ will be error free. Let N0 and N1 be the expected
number of error-free positions and error positions that we can find by taking all j with
(di)j < τ , respectively. Then

N0 := (k − we)

τ−1∑
h=0

P((di)j = h | (ei)j = 0),

and

N1 := (we)
τ−1∑
h=0

P((di)j = h | (ei)j = 1).
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Therefore, the probability that (ei)j = 0 for all j ∈ [k] such that (di)j < τ is given by

psucc :=
∏

j∈[k],(di)j<τ

P((ei)j = 0 | (di)j < τ) =

(
N0

N0 +N1

)N0+N1

.

The values for τ,N0, N1 and of psucc for each suggested parameter set of HWQCS are given
in Table 3.2. These values indicate how many error-free bits of ei we can expect to recover
with our strategy. Surprisingly enough, for security level 256 we can reconstruct more than
⌈k/2⌉ error-free positions of ei. The same does not hold for levels 128 and 192, meaning
that we need to guess ⌈k/2⌉ −N0 error-free positions on each side of e.

Security level ⌈k2⌉ τ N0 N1 psucc ⌈k2⌉ −N0

128 6270 12 5564.3997 0.3995 0.6707 706
192 9459 15 7574.2963 0.2521 0.7771 1885
256 12709 21 13560.6279 0.3457 0.7077 -

Table 3.2: For each security level, we report the threshold value τ , the values N0 and N1

of zero and one bits that we expect to find among the j’s such that (di)j < τ , and the
probability psucc that this event occurs. The value ⌈k2⌉ − N0 is the number of positions
that we still need to guess to fully reconstruct ⌈k/2⌉ entries.

Table 3.6 reports the probability distribution and expected values using our approximation
of (di)j given by Theorem 3.1.1.

Remark 3.1.6. We are considering ⌈k/2⌉ in order to make sure we are recovering enough
positions as k is an odd number for all three parameter sets. This implies that the prob-
abilities we are computing are actually underestimates. Also, for security 256 we might
select a subset of ⌈k/2⌉ of the N0 expected error free positions, which would increase the
value of the success probability to psucc = 0.7233. We will exploit this in subsection 3.1.4
to give a speed-up of our attack.

Remark 3.1.7. The security level 256 would have values as reported in Table 3.1.7.

Security level ⌈k2⌉ τ N0 N1 psucc

256 12709 22 16336.7984 0.8193 0.4407

Table 3.3: Value of τ as given in Equation 3.9, and the values of N0 and N1 of zero and one
bits that we expect to find among the j’s such that (di)j < τ , as well as the probability
psucc that this event occurs.

As mentioned at the beginning of this subsection, we are searching for a total of ⌈k/2⌉
error free entries in ei. The value of N0 for security level 256 with τ = 22, accounts
for many more positions than actually needed, with somewhat smaller success probability
compared to the levels 128 and 192. Decreasing the value of τ to 21 still gives N0 larger
than ⌈k/2⌉ and increases the success probability by more than 0.25.

We are left with the problem of finding the missing ⌈k2⌉ − N0 zero positions of ei for
security levels 128 and 192. According to the behavior of the (di)j entries, we aim at
finding these values among the j’s such that (di)j = τ , i.e. the set of positions that have
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the least probability of containing an error, after those we already chose. Let M0 and M1

be the expected number of error free and error positions j such that (di)j = τ , respectively.
Then

M0 = (k − we)P((di)j = τ | (ei)j = 0)

and
M1 = (we)P((di)j = τ | (ei)j = 1).

Therefore the probability such that ⌈k2⌉−N0 randomly chosen positions j such that (di)j =
τ will be error free is given by

qsucc :=

(
M0

M0 +M1

)⌈ k
2
⌉−N0

.

The values of M0,M1 and qsucc for levels 128 and 192 are reported in Table 3.4.

Security level ⌈k2⌉ −N0 M0 M1 qsucc

128 706 1806.5588 0.7402 0.7491
192 1885 2433.8479 0.4371 0.7129

Table 3.4: For security parameters 128 and 192, ⌈k2⌉ − N0 denotes the number of entries
which is still necessary to guess to perform our attack. Values M0 and M1 represent the
expected number of error free and error positions among the j’s such that (di)j = τ .

The overall probability of a correct recovery of ⌈k/2⌉ zero bits of ei is then

ptot := psucc · qsucc.

For the case of security level 256 we consider qsucc = 1 as N0 > ⌈k2⌉. Applying this
technique on both e1 and e2 we can recover k error free positions of e with probability of
success p2tot. Values for each security level are reported in Table 3.5.

Security level k p2tot

128 12539 0.2524
192 18917 0.3070
256 25417 0.5008

Table 3.5: For each security level, k and p2tot are the number of error free positions we need
to recover and the probability of recovering them correctly, respectively.

In other words, Table 3.5 says that we can successfully recover k error free coordinates of
e of around one fourth of the signatures of security level 128, slightly less than one third
of those of level 192 and of half of the signatures of level 256. In the next subsection, we
show how to completely reconstruct e using the k error free positions we recovered in this
subsection.
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h P((di)j = h | (ei)j = 0) Exp. number of entries P((di)j = h | (ei)j = 1) Exp. number of entries

0 3.078 · 10−7 0.004 1.248 · 10−13 1.759 · 10−11

1 5.935 · 10−6 0.074 6.220 · 10−12 8.770 · 10−10

2 0.006 · 10−2 0.686 1.500 · 10−10 2.115 · 10−8

3 0.003 · 10−1 4.128 2.331 · 10−9 3.286 · 10−7

4 0.001 17.973 2.623 · 10−8 3.698 · 10−6

5 0.005 60.371 2.277 · 10−7 0.003 · 10−2

6 0.013 162.726 1.586 · 10−6 0.002 · 10−1

7 0.029 361.500 9.109 · 10−6 0.001
8 0.054 674.586 0.004 · 10−2 0.006
9 0.086 1072.334 0.001 · 10−1 0.025
10 0.118 1467.441 0.006 · 10−1 0.090
11 0.141 1742.590 0.002 0.276
12 0.146 1806.558 0.005 0.740
13 0.132 1642.366 0.0123 1.739
14 0.105 1313.477 0.025 3.595
15 0.074 925.951 0.0464 6.550
16 0.046 575.964 0.0746 10.530
17 0.025 316.115 0.105 14.937
18 0.012 152.936 0.132 18.678
19 0.005 65.088 0.145 20.545
20 0.001 24.292 0.140 19.818
21 0.0006 7.914 0.118 16.688
22 0.0001 2.237 0.086 12.195
23 0.00004 0.544 0.054 7.671
24 9.109 · 10−6 0.112 0.029 4.11
25 1.586 · 10−6 0.019 0.013 1.850
26 2.277 · 10−7 0.002 0.005 0.686
27 2.623 · 10−8 0.003 · 10−1 0.001 0.204

Table 3.6: Values of the distribution of (di)j for security level 128. For every h, we report
the probability that (di)j = h, conditioning on the event (ei)j = 0, 1. Two more columns
report the expected number of entries j associated to (di)j = h.

Completing the reconstruction of e

In this subsection, we exploit the analysis performed so far to fully reconstruct the ephemeral
values e1, e2 with a certain probability. Recall that

b = He⊤, (3.10)

where e = (e1, e2) and H =
(
circ(h), circ(h)−1

)
.

Let J ⊂ {0, . . . , 2k − 1} the set of k positions recovered using the strategy outlined in
Subsection 3.1.2 and let I := {0, . . . , 2k − 1} \ J . Finally, let HI be the submatrix of H
which consists of the columns indexed by I. We can treat HI as a random matrix in Fk×k

2 .
Assume that HI is invertible. Then given the syndrome equation b = He⊤ of e as in Sign,
we can compute ē = H−1

I b and thus reconstruct e = (e0, . . . , e2k−1) as

eh =

{
ēh if h = i for some i ∈ I

0 otherwise,
(3.11)

for each h ∈ {0, . . . , 2k − 1}. The probability for a random k × k matrix to be invertible
is given by Proposition 3.1.8.
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Proposition 3.1.8. Let H ∈ Fk×k
2 be a random square matrix. The probability that H is

invertible is given by

pinv :=

k−1∏
i=0

(
1− 1

2k−i

)
. (3.12)

Proof. For k = 1 the result is trivial. Suppose k is greater than one. If we have k − 1
independent vectors, the probability that the k-th vector is independent of the previous is
(2k − 2k−1)/2k. Multiplying the probability for which these k− 1 vectors are independent
and the probability that the k-th vector is independent of the others yields

2k − 2k−1

2k
·
k−2∏
i=0

(
1− 1

2k−i

)
=

k−1∏
i=0

(
1− 1

2k−i

)
.

For each set of suggested parameters for HWQCS, the value of the probability of HI

being invertible is pinv := 0.2888.

Remark 3.1.9. The code used to compute data for this subsection can be found at
https://github.com/triki96/Cryptanalysis-of-HWQCS

3.1.3 Universal Forgery
We exploit the reconstruction of e1, e2 to mount a universal forgery attack. Suppose that
an adversary A intercepts a signature (c, b, s1, s2) used by an honest signer to sign a given
message m. Note that:

b = e1h+ e2h
−1,

c = Hwc(m, b, u1f2 − u2f1, pk),

si = uifi + cei.

Now, suppose that A is given a random message m′, and that it is asked to sign that mes-
sage. The adversary needs σ′ = (c′, b′, s′1, s

′
2) which satisfies Vf(m′, pk, σ′) = 1. Therefore,

A computes the signature in the following way:

b′ = b,

c′ = Hwc(m
′, b′, s1h+ s2h

−1 − cb, pk),

s′i = si − cei + c′ei = uifi + c′ei.

The verifier computes

t′ = s′1h+ s′2h
−1 − c′b′

= s′1h+ s′2h
−1 − c′b

= (u1f1 + c′e1)h+ (u2f2 + c′e2)h
−1 − c′(e1h+ e2h

−1)

= u1f2 + u2f1.

Clearly t′ ̸= 0 and w(t′) ≤ wt, as this is the same value computed in the verification phase
of the first sign. It remains to check whether c′′ := Hwc(m

′, b′, t′, pk) is equal to c′, but

c′′ = Hwc(m
′, b′, t′, pk) = Hwc(m

′, b, u1f2 + u2f1, pk) = c′.

This concludes the forgery. Algorithm 11 is a probabilistic algorithm that sequentially
analyzes the HWQCS signatures to retrieve the ephemeral values e1, e2 and forge a new
signature for m′.
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Algorithm 11 Attack on HWQCS
Input pk = (h) and τ according to Table 3.2.
Output True/False.

1: function attackHWQCS(h, τ)
2: Compute H =

(
circ(h), circ(h)−1

)
;

3: Request (m,σ) = (m, (c, b, s1, s2));
4: Compute di :=

∑
v∈Supp(c) x

−vsi ∈ Z[x];
5: Set

• J1,1 := {j ∈ [k − 1] | (d1)j < τ} and

• J1,2 := {j ∈ [k − 1] | (d2)j < τ};
6: Set random

• J2,1 ⊂ {j ∈ [k − 1] | (d1)j = τ} and

• J2,2 ⊂ {j ∈ [k − 1] | (d2)j = τ}
of size ⌈k/2⌉ −#J1;

7: Set I := [2k − 1] \ (J1,1 ∪ J1,2 ∪ J2,1 ∪ J2,2);
8: Set HI the submatrix of H made by columns of H indexed by I;
9: if Hi is not invertible then

10: Go to (3);
11: else
12: Compute ē = H−1

I b;
13: Set e′ = (e′0, . . . , e

′
2k−1) = (e′1, e

′
2) as

e′h =

{
ēh if h = i for some i ∈ I,

0 otherwise.

14: end if
15: Let m′ be a new message to be signed;
16: Compute b′ = b;
17: Compute c′ = Hwc(m

′, b′, (s1h+ s2h
−1 − cb′, h);

18: Compute s′i = si − ce′i + c′e′i;
19: if Vf(m′, h, (c′, b′, s′1, s

′
2)) then

1. Return true;

20: else

1. Go to (3);

21: end if
22: end function

3.1.4 Complexity of the Attack
We estimate the success probability of Algorithm 11. The attack succeeds in reconstructing
the data needed for a universal forgery if we can correctly obtain k error-free positions of
e and if the matrix HI , which depends on the recovered positions, is invertible. We com-
puted the success probabilities p2tot and pinv of both events in Subsections 3.1.2 and 3.1.2,
respectively. Therefore, the success probability of Algorithm 11 is given by the product

pbreak := p2tot · pinv,
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and thus the expected number of attempts to achieve success is given by ⌈1/pbreak⌉. The
cost of each attempt is dominated by the inversion of the matrix HI ∈ Fk×k

2 , which is in
O(k2.37). Therefore, Algorithm 11 runs in time O(2log(k2.37/pbreak)). The values of pbreak,
the expected number of needed attempts, and the cost of the attack for each security level
of HWQCS are reported in Table 3.7.

Security level pbreak Number of signatures Cost

128 0.0727 14 36.04
192 0.0887 12 37.25
256 0.1446 7 37.48

Table 3.7: For each security level, pbreak denotes the probability that our attack successfully
retrieves the ephemeral values e1, e2 from a given signature. The expected number of
signatures for our attack to succeeds and the log2 of the cost of the attack are reported.

We implemented an unoptimized version of our attack in SageMath and ran it on a
Linux Mint virtual machine. The code stops after recomputing e′ and checking it against
the real error vector e. If the two match, the forgery succeeds. Table 3.8 reports the
average, in 10 runs of the attack for each security level, of the number of signatures needed
to recover e and the average time consumed analyzing each signature.

Security level Number of signatures Consumed time (s)

128 17 40.33
192 9 92.50
256 3 133.25

Table 3.8: Average number of signatures needed to mount our universal forgery attack, and
average time needed to analyse each signature, on 10 runs of our attack for each security
level.

Further Optimizations

Due to the large value of N0 as an effect of our choice of τ = 21 for security level 256, see
Table 3.2, it is possible to slightly improve our attack by intercepting only one signature.
Indeed, we can take advantage of this surplus of potentially error-free positions that we
obtain by taking all j such that (di)j < τ . The idea is to randomly pick a subset Ji
of cardinality ⌈k/2⌉ of the N0 + N1 positions such that (di)j < τ for both i = 1, 2. In
other words, we are applying plain information set decoding on a potentially error-free set
of positions to find an invertible submatrix of H. Note that Ji has probability of being
error-free equal to (N0/(N0 +N1))

⌈k/2⌉. Since we do this for both the left and right hand
side of e, the overall probability of J := J1 ∪ J2 being error-free is p := (N0/(N0 +N1))

k.
According to the values in Table 3.2, we have p = 0.5231. Set now I := [2k − 1] \ J
and let HI be the matrix consisting of the columns of H indexed by I. According to
Proposition 3.1.8, the probability that HI is invertible is pinv = 0.2888. In the case where
HI is invertible, we continue in the same way as in our attack, leading to a forgery. The
success probability of recovering the correct e then becomes

pbreak = p · pinv = 0.1511,
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which gives an improvement of 0.065 on the probability 0.1446 reported in Table 3.7. The
expected number of attempts to find an invertible matrix HI is ⌈1/pbreak⌉ = 5, which
improves on table 3.7 by 2.

As a conclusive remark, through a detailed analysis of the information leakage on ephemeral
keys during the signing process, we demonstrated how partial secret data can be efficiently
reconstructed from a limited number of signatures, regardless of the chosen security level
(128, 192, or 256 bits). This enabled the development of a universal forgery attack that
exploits this leakage to produce valid signatures for arbitrary messages. We proposed a
probabilistic algorithm, implemented in SageMath, which empirically supports the effec-
tiveness and efficiency of our attack strategy, particularly at the 256-bit security level,
where an additional optimization further accelerates the recovery of secret data.

3.2 An Unsuccessful Cryptanalysis: Wave
This work represents an attempt to construct a new distinguisher for normalized gener-
alized (U,U + V ) codes. This is the class of codes used by Wave [DAST19], a recently
proposed “hash and sign” digital signature scheme. Our attempt heavily exploits the weight
distribution of these codes, for which low-weight codewords have a different distribution
from that of a random code. In particular, the security of Wave [DAST19] is based on the
following two problems:

1. Decoding One Out of Many (DOOM) Problem [JJ02];

2. indistinguishability of permuted normalized generalized (U,U + V ) codes.

The Decoding One Out Of Many Problem is a variant of the Syndrome Decoding Problem,
where multiple instances are considered at once. We have already introduced this problem
in Def. 2.1.8, but we choose to briefly recall it here, for the further purpose of fixing the
notation we will use later in the discussion.

Input : a prime q, w ∈ N, H ∈ F(n−k)×n
q , m syndromes s1, . . . , sm ∈ Fn−k

q .

Output : a word x s.t. w(x) = w and s⊤i = Hx⊤ for some i ∈ {1, . . . ,m}.

Normalized generalized (U,U + V ) codes are a specific type of generalized (U,U + V )
codes, which in turn are a generalization of (U,U + V ) codes, and the indistinguishability
of the latter is an NP-complete problem [DAST17] if the dimensions kU and kV of the two
building codes are such that kU < kV . However, in order for the Wave decoder to work
properly, it must be kU ≥ kV . In this case, the problem is no longer shown to be NP-
complete. Furthermore, in the special case of q = 2 there is an algorithm which is able to
efficiently solve the distinguishing problem [DAST17]. This algorithm applies only to the
binary case, and this motivates the choice for Wave to work with a non-binary finite field.
In the midst of the turbulent history that has seen many hash&Sign code-based signature
schemes as protagonists, Wave is among the few for which cryptanalysis does not seem to
have shown any weakness. A question that would certainly be interesting to answer is the
following.

Is the Wave digital signature scheme secure?
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As with the previous section, we have voluntarily decided to leave this question vague,
meaning that the term secure should be more strictly defined. Differently from the previous
section, in this case, saying secure, we mean formally secure. That is, we ask whether the
security assumptions holds. In particular, our analysis focuses on the indistinguishability
of the codes used by this scheme. In an attempt to answer this question in the affirmative,
we tried to devise a distinguisher that was capable of recognizing with good probability
whether a given input code came from a random distribution, or whether it was a permuted
generalized (U,U + V ) code. In this section we will describe our attempt, and the main
idea on which it is based, showing the great obstacle we ran into and which did not allow
us to clearly answer the main question. Despite the negative outcome, we still decided to
include this work in the thesis, as the the follow-up presented in the following section arose
in a very natural way from this first attempt.

3.2.1 Normalized Generalized (U,U + V ) Codes
The codes employed in Wave are called normalized generalized (U,U + V ) codes, and are
defined as follows.

Definition 3.2.1 (Normalized Generalized (U,U + V ) Codes). Let U, V ⊆ Fn/2
q be two

linear codes with length n/2 and respective dimensions kU and kV . Let a, b, c, d ∈ Fn/2
q be

four vectors with length n/2 and such that

- for every i ∈ {1, 2, . . . , n/2}, ai ̸= 0 and ci ̸= 0;

- for every i ∈ {1, 2, . . . , n/2}, aidi − bici = 1.

Let A,B,C,D ∈ Fn/2×n/2
q be the diagonal matrices obtained from the vectors a, b, c and

d. Then, the normalized generalized (U,U + V ) code C(U, V ) is defined as the linear code

C(U, V ) = {(uA+ vB , uC+ vD) |u ∈ U, v ∈ V } ,

and has length n and dimension k = kU + kV .

A generator matrix G and a parity-check matrix H for C(U, V ) have the following form:

G =

(
GUA GUC
GV B GV D

)
H =

(
HUD −HUB
−HV C HV A

)
, (3.13)

where GU ∈ FkU×n/2
q and GV ∈ FkV ×n/2

q are the generator matrices for U and V , HU ∈
FrU×n/2
q and HV ∈ FrV ×n/2

q are parity-check matrices for U and V , respectively, and
rU = n/2− kU , rV = n/2− kV .

We recall that for a generic code C and a given integer w, we denoted by NC(w) the
number of codewords of C of weight w. For a random linear code C of dimension k over
Fn
q , it holds that

NC(w) =

(
n
w

)
(q − 1)w

qn−k
.

This is due to the fact that, denoting with H the parity check matrix associated to C,
for every non zero vector x ∈ Fn

q the product Hx⊤ spreads uniformly over Fn−k
q , and

the number of vectors of length n and weight w is exactly
(
n
w

)
(q − 1)w. For the sake of

simplicity, in the following a normalized generalized (U,U+V ) code will always be denoted
by C(U,U+V ). In the following, we state a very useful result, which will be of fundamental
importance in the construction of the distinguisher for normalized generalized (U,U + V )
codes.
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Proposition 3.2.2. Let U, V ⊆ Fn/2
q be random linear codes and let C(U,U + V ) ⊆ Fn

q be
a normalized generalized (U,U + V ) code. Then

NC(U,U+V )(2w) ≥ NU (w).

Proof. Notice that for every u ∈ U of weight w the vector

(u, 0) ·
(

A C
B D

)
= (uA, uC)

lies in C and has weight 2w. This is due to the fact that, by construction, both A and C
are diagonal matrices with non-zero entries along the main diagonal, and so do not change
the weight of the vector they are multiplied to. Finally, from [DAST19] we know that G is
a bijection between {(u, v) | u ∈ U, v ∈ V } and its image through G, and the desired result
follows easily.

3.2.2 A Distinguisher Attempt
Notice that for the Wave decoder to work it is necessary that the dimensions kU and kV
of U and V are such that kU ≥ kV (equivalently, RU ≥ RV ). According to this, to reach
128 bits of security, the following set of parameters is chosen:

n = 8492, kU = 3558, kV = 2047.

If the code V has rate RV ≪ RU , then it happens that the minimum distance of V is
much greater than that of U . Let dU and dV denote respectively the minimum distance
of U and V . In our setting, the GV bound provides dU = 150 and dV = 712, and we
know from Proposition 3.2.2 that, for every even w greater than 300, we can lower the
bound NC(U,U+V )(w) as NU (w/2). Notice that there exist several values of w ≥ dU for
which NV (w) ≈ 0. This means that, for low values of w, this quantity is also a good
estimate of the exact number of codewords for C(U,U + V ), since the words coming from
any combination of u ∈ U \ {0} and v ∈ U \ {0} typically have higher weights.

This implies that the weight distribution of low-weight codewords of a normalized gen-
eralized (U,U + V ) code is very different from that of a random linear code. In fact, if C
was a random code, thanks to Theorem 1.3.10, we can compute the associated GV bound
as

dC = min

{
d ∈ N

∣∣∣∣(nd
)
(q − 1)dq−r ≥ 1

}
.

Since random codes asymptotically reach this bound, we can set the minimum distance of
C to be approximately dC ≈ h−1

q (1 − RC)n, where hq is the q-ary entropy function and
RC = kC/n. Notice that for a random linear code with the same parameters as Wave, we
expect dC to be equal to 788. Hence, for a random code, we expect NC(w) ≈ 0 for any
w < dC . Furthermore, for w > dC , we expect that

NC(w) =

(
n
w

)
(q − 1)w

qn−k
.

Figure 3.5 shows the weight distribution for both types of code where w is small.
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Figure 3.3: (log of) number of codewords of Wave hidden code and (log of) number of
codewords of a random linear code with the same parameters.

This peculiarity of the code used by Wave opens the way to two types of attacks. First,
since the code U has a minimum distance that is much smaller than dC , there exists a
wide range of weights w ∈ [2dU , dC) for which w-codewords exist in C(U,U + V ), but are
not expected to exist in a truly random code C with the same parameters. A natural
distinguisher that exploits this property could work as follows: on input a parity check H
of a code C, for w ∈ [2dU , dC), call an ISD algorithm for N times, searching for a codeword
with weight w in the code whose parity-check matrix is H. If all calls are unsuccessful,
output 0; if at least one call is successful, output 1. Unfortunately, the complexity of such a
distinguisher is just prohibitive for Wave parameters. However, Figure 3.5 suggests another
way to proceed: even if w is greater than dC , there is still a large interval where the number
of w-codewords of a normalized generalized (U,U+V ) code is larger than the number of w-
codewords of a random code C. In essence, this means that the ISD algorithms work better
in the first case. We tried to exploit the complexity of these algorithms to understand if
we are dealing with a random code or not, in particular, for the distinguishing game we
consider the following algorithm:

1. Setup:

- sample H′ $←− Fr×n
q ;

- sample a random normalized generalized (U,U + V ) with redundancy r and
length n with parity-check matrix H′

C as in (3.13). Sample a random full rank
S ∈ Fr×r

q and a random permutation matrix P ∈ Fn×n
q and set H′′ = SH′

CP;

- sample at random b ∈ {0, 1};
- if b = 0, set H = H′, else set H = H′′;

- output H.

2. Distinguisher :
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- Fix an appropriate weight w, and compute the theoretical complexity of our ISD
algorithm, both in the case of a random code and in the case of a normalized
generalized (U,U + V ) code;

- Run a statistical test;

- Compare the experimental results with our previous estimates. If the results
match the theoretical complexity of a normalized generalized (U,U + V ) code,
the output is 1, otherwise the output is 0.

Complexity (Theoretical Estimates)

We compute the complexity of finding codewords of small weight w both in the case of
a random code and in the case of a normalized generalized (U,U + V ) code. We take
into consideration Stern’s algorithm [Ste89], which is one of the most widely used ISD
algorithms, as well as one of the fastest on a classical computer. Notice that Stern works
with two additional parameters, which will be denoted as ℓ and p. According to this, the
complexity of the algorithm is given by Theorem 1.3.23:

TS =
n3 + L+ L2/qℓ

p(n, k, w)
, (3.14)

where

p(n, k, w) =

(
(k+ℓ)/2

p

)2(n−k−ℓ
w−2p

)(
n
w

) , L =

(
(k + ℓ)/2

p

)
(q − 1)p.

Since we are working with multiple solutions to our problem, we also have to take into
account the expected number of codewords of weight w. In the case of a code C, this
quantity is given by NC(w). Notice that p(n, k, w) is the success probability of one iteration
of the considered ISD algorithm. Since there are NC(w) codewords with the desired weight,
and we are satisfied with any of them, we can consider a larger success probability, that is,

p∗(n, k, w) = 1− (1− p(n, k, w))NC(w) ≈ min {1 ; NC(w)p(n, k, w)} .

Consequently, we can modify Stern’s complexity as suggested by Proposition 1.3.21, ob-
taining

TS =
n3 + L+ L2/qℓ

p∗(n, k, w)
. (3.15)

We have calculated the complexity of this algorithm for different parameters choices, ending
in selecting ℓ = 29 and p = 4. For this choice Stern complexity is depicted in Figure 3.4,
and the best result for Wave (U,U +V ) code is achieved for w = 970, for which TS ≈ 2117.
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Figure 3.4: On the left: bit complexity of Stern’s algorithm with fixed parameters ℓ =
29, p = 4, applied to Wave (U,U + V ) code. On the right: the complexity of the same
algorithm applied to a random linear code with the same parameters.

Complexity (Experimental Results)

In an attempt to validate our results, we simulated our algorithm by scaling Wave parame-
ters. Surprisingly, the results deviate significantly from our estimate, making the behavior
of the codes used in Wave apparently indistinguishable from random codes. In particu-
lar, in the Wave case, we expected that Stern’s ISD could find a codeword with a lower
complexity. In practice, this does not happen. Recall that Stern’s algorithm chooses k+ ℓ
columns among n of (a permuted version of) H. The probability that a codeword c of
weight w has its non-null components arranged as:

• p components in the first k+ℓ
2 entries,

• p components in the Second k+ℓ
2 entries,

• w − 2p components in the last n− k − ℓ entries,

is given by

p(n, k, w) =

(
(k+ℓ)/2

p

)(
(k+ℓ)/2

p

)(
n−k−ℓ
w−2p

)(
n
w

) .

Notice that this holds just for random codes. Since we are considering weights for which
the number of codewords NC(w) is greater than 1, the probability that a solution for the
small instance is also a solution for the big instance is given by

p∗(n, k, w) = 1− (1− p(n, k, w))NC(w)

Notice that this holds only if the solutions are independent. Once we fix the values of
w and p, we can estimate:

• the number of collisions (considering the parameters of the small instance);

• (using the above formula) the number of solutions for the complete instance.
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Remark 3.2.3. According to our simulations, for random codes these checks are always
verified (this leads us to think that the theoretical estimates are correct); however, for a
normalized generalized (U,U +V ) code it happens that even if the number of collisions for
the small instance matches the theoretical estimate, almost none of these collisions leads
to a solution c for Hc⊤ = 0. Said otherwise, once fixed a vector of weight 2p in the first
k+ ℓ entries, it is very unlikely that ISD is able to “complete it” to a solution for Hc⊤ = 0
of weight w.

Where are we wrong? There are two options:

1. We fail to count the number of codewords NC(w). However, in the worst case, our
estimates are a lower bound for the number of w-codewords, so we would get better
results.

2. We fail to consider the w-codewords to be independent. For the weights w that we
are considering, the w-codewords all come from the code U , that is, they are all
words of the type (uA, uC). We have seen that for random codes the theoretical
estimates are correct, so the thing that creates problem is the structure of the code
U inside the (U,U +V ) construction. In this case U is repeated two times, each time
multiplied by a different diagonal matrix.

Notice that in an attempt to build a distinguisher, we used ISD algorithms in the
context in which the number of codewords that we expect is greater than 1. ISD is
designed to work in regimes where there is only one solution, and in this new context
we can try to devise better algorithms. In the next section, we take advantage of the
generalized ISD paradigm that we have already introduced, and take this basic difference
into account. Starting from this new description, we will be able to provide new estimators
for the weight distribution of a random code.

3.3 ISD for Weight Distribution
The problem of determining the weight distribution of a given linear code, that is, how
many codewords of some weight does the code contain, has been studied for a long time.
Such a quantity represents a sort of aggregate way to measure the ability of the code to
correct errors in noisy channels: roughly speaking, if the weight distribution is centered
around large values, then we expect the code to behave better. In the following, we state
the main problem we are interested in.

Definition 3.3.1 (Weight Enumerator Problem). Let Fq be a finite field, and let k ≤ n
be positive integers. The Weight Enumerator Problem (WEP) is the problem defined as
follows:

Input : a linear code C ⊆ Fn
q and w ∈ N.

Output : NC(w).

Not only has this problem been known for a long time, but it also appears to be very
difficult to solve, since the determination of the distribution implies the determination of
the minimum distance. We will also consider the approximate version of the problem, that
is, we are satisfied even if we are able to determine whether NC(w) lies in some (bounded)
range.
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Definition 3.3.2 (Approximate Weight Enumerator Problem). Let Fq be a finite field, and
let k ≤ n be positive integers. The Approximate Weight Enumerator Problem (ApproxWEPε)
is the problem defined as follows:

Input : a linear code C ⊆ Fn
q , w ∈ N and ε ≥ 0.

Output : compute N∗
C(w) so that NC(w)(1− ε) ≤ N∗

C(w) ≤ NC(w)(1 + ε).

In our case, interest arose in studying the codes underlying Wave, but there are many
other cases of practical interest. For instance, Leon’s algorithm [Leo88] requires to find all
codewords having some fixed weight, which may not be the minimal one. This algorithm is
used to compute the automorphism group of a linear code [Leo82], and finds applications
in the resolution of the code-equivalence problem [Bou07]. For some codes, the associated
weight distribution is known, but in general this problem is far from easy. We wondered
the following.

Can we propose new algorithms to estimate
the weight distribution of a linear code?

In the following, we use ISD algorithms to build estimators for this quantity. The descrip-
tion of the algorithm is accompanied by a study of the statistical reliability and the time
complexity. To do this, we analyze the behavior of ISD in the not so studied regime of
large weights (say, much larger than the minimum distance).

Related works. Compare with [HMM05], where the authors describe how the success
probability can be used as an estimator for the weight distribution of a code. The idea is
based on the heuristic assumption that the codewords of a given code behave as random
vectors of fixed weight, when considering the performances of ISD algorithms. Since the
number of codewords has an impact on the success probability of each iteration, the authors
propose to measure the success probability empirically and then use a simple formula to
derive the number of codewords. This approach has a major limit in the fact that, for
moderately large weights, the success probability saturates, and learning something about
the number of codewords becomes unfeasible.

Our contribution. We exploit the general framework already introduced for ISD al-
gorithms to consider the need for some distinct codewords of the same weight. Then, we
improve on the approach in [HMM05] for two aspects. From a computational point of
view, we consider an approach that can sometimes be faster than standard ISD. Then, we
use quantities different from the simple success probability. Indeed, we also show that the
average number of solutions produced can be used to obtain a good approximation for the
number of codewords of a given weight. To verify the performances of our algorithm, we
use it to obtain the weight distribution of some well-known codes.

3.3.1 Estimators for the Weight Distribution
The naive approach to solve WEP would be to list all the codewords of C and count the
number of weight-w codewords. By omitting scalar multiples from the enumeration, this
would cost

O(qk−1) = O(qk).

A better approach would be to enumerate only codewords whose weight is properly bounded.
In fact, let G be a generator for C: one can put the matrix in systematic form and then
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enumerate only the codewords obtained from a linear combination with weight less or equal
than min{w, k}. This would cost

min{w,k}∑
i=1

(
k

i

)
(q − 1)i ≈

min{w,k}∑
i=1

qkhq(i/k),

which asymptotically, taking the maximum of the considered terms, is{
qk·hq(w/k) if w < k,
qk if w ≥ k.

(3.16)

The idea of using ISD as an estimator has first appeared in [HMM05]. The authors
exploit the success probability of the algorithm to provide an estimate for the number of
codewords of a fixed low weight in a code C. In case the code C contains NC(w) words of
weight w, we can say that on average the number Y of codewords returned by ISD is

E[|Y |] = NC(w) · pISD(w). (3.17)

Since in [HMM05] ISD is modeled as an algorithm that can either fail or return only one
codeword of fixed weight, E[|Y |] is interpreted as a measure of how successful a call to ISD
is. Stated differently, in the case where NC(w) is greater than 1, the quantity E[|Y |] ∈ [0, 1]
measures on average how many ISD iterations went well. This value can be observed with
numerical simulations, and additionally depends on NC(w), indeed let Bw be the number
of the weight w vectors which are found through m iterations of ISD. Then, the average
ratio of founded codewords is given by Bw/t. Therefore, the following holds:

NC(w) · pISD(w) ≈
Bw

m
. (3.18)

In other words, we dispose of something that we are able to compute and that depends on
NC(w). So, launching ISD and keeping track of the average number of iterations before one
correct codeword is returned, we are able to estimate NC(w) by simply reverting (3.18).
The procedure is reported in Alg. 12.

Algorithm 12 Estimator from [HMM05]
Input : H ∈ Fr×n

q , weight w ∈ N, number m ∈ N of ISD calls.
Output : N∗

C(w)

1: Set Bw ← 0 // Number of successful calls to ISD

2: for i ∈ {1, . . . ,m} do
3: if |ISD(H, w)| ≥ 1 then
4: Bw ← Bw + 1
5: end if
6: end for
7: N∗

C(w)← Bw/(m · pISD(w))
8: return N∗

C(w)

While this approach is useful for low-weight codewords, it has a major limit for mod-
erately large weights. In this case the value NC(w) grows very quickly and saturates the
right side of Equation (3.18): we have Bw ≈ m and, from (3.18), we get that also the
estimate saturates as well, since

N∗
C(w) ≈

1

pISD(w)
.
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The most natural way to solve this problem would be to iterate the ISD algorithm
several times, in order to have a reasonable number of samples to draw conclusions about
the approximate value of Bw. However, this approach is computationally unfeasible for the
rate of growth with which NC(w) increases. We describe a way to overcome this problem
in the following.

Estimator I

We describe a simple, but rather effective, improvement on the method of [HMM05]. Our
idea consists of using not only the average success probability, but also the codewords
found (and their number) to obtain a good estimate for NC(w). The first new estimator
we present is detailed in Algorithm 13. The approach is based on the fact that the average
number of codewords found, per ISD call, is E[|Y |] = NC(w) ·pISD(w). What the algorithm
does is simply counting the number of codewords that are returned by one call to ISD and
reverting (3.17). To reach a more granular estimate, we can run ISD m times and then
compute 1

m

∑m
i=1 N̂i (where N̂i is the number of weight-w codewords that have been found

in the i-th call to ISD) as an estimate for E[|Y |].

Algorithm 13 Estimator I
Input : H ∈ Fr×n

q , weight w ∈ N, number m ∈ N of ISD calls
Output : N∗

C(w)

1: for i ∈ {1, . . . ,m} do
2: Y ← ISD(H, w)
3: Set N̂i ← |Y | // Number of found codewords in i-th call to ISD

4: end for
5: N∗

C(w)←
1

m·pISD(w)

∑m
i=1 N̂i

6: return N∗
C(w)

Estimator II

The second estimator that we consider is shown in Algorithm 14. Denote by m the number
of ISD calls that we make. The algorithm considers that, for any of the NC(w) codewords
in Cw, the probability that it is found in at least one ISD call is 1−

(
1−pISD(w)

)m. Hence,
the average size of A (that is, the average number of distinct codewords) is

E[|A|] = NC(w)
(
1−

(
1− pISD(w)

)m)
.

So, we can obtain an estimate for NC(w) as

N∗
C(w) =

|A|
1−

(
1− pISD(w)

)m (3.19)
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Algorithm 14 Estimator II
Input : H ∈ Fr×n

q , weight w ∈ N, number m ∈ N of ISD calls
Output : N∗

C(w)

1: A← ∅ // The set of all found codewords

2: for i ∈ {1, . . . ,m} do
3: Y ← ISD(H, w)
4: Update A← A ∪ Y // Update set of found codewords

5: end for
6: N∗

C(w)←
|A|

1−
(
1−pISD(w)

)m
7: return N∗

C(w)

3.3.2 Comparison Between the Approaches
It is easy to see that both approaches I and II are somewhat more general than the one
presented in [HMM05]. Let us first compare approach I with [HMM05]. If pISD(w) ·
NC(w)≪ 1 (that is, when the estimate (1.5) does not saturate), we have

p∗ISD(w) ≈ pISD(w) ·NC(w) = E[|Y |].

So, our estimator behaves in the same way as the one in [HMM05]. Notice that the above
approximation does not work when pISD(w) ·NC(w) is moderately large. In such cases, as
we have already argued, the estimator in [HMM05] saturates, while our Estimator I is able
to return a valid value.

Example 3.3.3. To give an idea of this fact, we took into consideration a random linear
code with n = 100 and k = 50. For this code we estimated the number of words following
the distribution described in Thm. 1.3.18. In addition, for each weight w, we estimated
NC(w) using the approach proposed in [HMM05] and approach 1 described above. For
each of the two cases we used Stern, calling it 20 times and averaging the result. The final
estimates are shown in Fig. 3.5.

10 12 14 16 18 20 22 24

0

5

10

15

Weight w

N
um

be
r

of
co

de
w

or
ds

Theoretical estimate for NC(w)

Estimate from [HMM05]
Estimate with Estimator I

Figure 3.5: Theoretical estimate of the (log of) number of codewords of a [100,50]
random linear code. The estimator used has been tested on 20 takes. From w = 17 the

estimator from [HMM05] saturates.

We observe that for small values of w, the two estimates are almost identical, while for
bigger weights, the method from [HMM05] does not give any appreciable result. This is
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due to the fact that in these cases the value p∗ISD is too close to one to be observed with
only 20 calls to ISD. We could try to fix this issue augmenting the number of calls. This
is possible for small instances, but in general, for bigger numbers, the rate of growth of
NC(w) is so high that this approach quickly becomes computationally infeasible. Notice
that this is exactly the reason for which the authors of [HMM05] said this approach works
only for small values of w.

A comparison between estimators I and II requires some technicalities which we will
introduce in the next subsections. Yet, it is easy to see that, at least for some regimes,
the two estimators have the same behaviour. Indeed, when NC(w) is extremely large, the
probability that the same codeword is returned by more than one ISD call is negligible.
Assuming m · pISD(w)≪ 1, we have

|A|
1−

(
1− pISD(w)

)m ≈ |A|
m · pISD(w)

≈
∑m

i=1 N̂i

m · pISD(w)
,

which is exactly the estimate used inside Estimator I.

3.3.3 Statistical Reliability and Overall Time Complexity
In this subsection, we derive the number of ISD calls we would need, in order to achieve
some bounded error in our estimate. Starting from this, we are able to derive a closed
formula for the time complexity of our approach. We now compare the two new estimators
considering the following constraints:

• same computational complexity, i.e., same number of ISD calls (which we denote by
m) and same setting for the ISD (same algorithm, same parameters);

• same approximation factor, i.e., same value of ε.

To do this, we study estimators as probabilistic algorithms that solve the approximate
version of WEP with some probability ζ ≥ 0. Using the Chebychev bound, we derive
lower bounds for ζ.

Theorem 3.3.4 (Success probability of estimator I). Let us consider estimator I with
input parameters w and m. For any ε ≥ 0, the error in the estimate is lower than ε with
probability at least

1− 1− pISD(w)

mε2NC(w)pISD(w)
.

Proof. We model N̂i as the sum of NC(w) random variables, each one associated to a
codeword in Cw. Each variable is equal to 0 if the associated codeword is not returned,
and 1 otherwise. Indeed, under Assumption 1, any weight-w codeword behaves as a random
codeword over C∗

w. Hence, it will be returned as the output of ISD with probability pISD(w).
Since N̂i is the sum of NC(w) independent Bernoulli variables, with parameter pISD, we
have

E[N̂i] = pISD(w)NC(w), Var(N̂i) = pISD(w)
(
1− pISD(w)

)
NC(w).

We will make an error lower than some ε ≥ 0 whenever

(1− ε)NC(w) < N∗
C(w) < (1 + ε)NC(w).
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Since N∗
C(w) =

1
m·pISD(w)

∑m
i=1 N̂i, we obtain

m(1− ε)pISD(w)NC(w) <
m∑
i=1

N̂i < m(1 + ε)pISD(w)NC(w). (3.20)

Let X =
∑m

i=1 N̂i, with expected value µ = E[X] = m ·NC(w) · pISD(w) and variance

Var(X) =
m∑
i=1

Var(N̂i) = mNC(w)pISD(w)
(
1− pISD(w)

)
.

Notice that we can sum the variances of each N̂i since each call to ISD is independent and
uncorrelated from the others. With this new notation, we rewrite Eq. (3.20) as |X − µ| <
µε. From Chebyshev’s inequality, we get

P [|X − µ| ≥ µε] ≤ Var(X)

µ2ε2

=
mNC(w)pISD(w)

(
1− pISD(w)

)(
mNC(w)pISD(w)

)2
ε2

=

(
1− pISD(w)

)
mε2NC(w)pISD(w)

.

We finally obtain

P [|X − µ| < µε] = 1− P [|X − µ| ≥ µε]

≥ 1− 1− pISD(w)

mε2NC(w)pISD(w)
.

We now took into consideration the Estimator II. Notice that each codeword will be
found, after m ISD calls, with probability 1−

(
1−pISD(w)

)m. As a consequence, |A| is the
sum of NC(w) independent and equally distributed Bernoulli variables and has expected
value and variance given by

E[|A|] = NC(w)
(
1−

(
1− pISD(w)

)m)
,

Var[|A|] = NC(w)
(
1−

(
1− pISD(w)

)m)(
1− pISD(w)

)m
.

Given these observations, the following result is immediate and its proof proceeds analo-
gously to that of the previous theorem.

Theorem 3.3.5 (Success probability of estimator II). Let us consider estimator II with
input parameters w and m. For any ε ≥ 0, the error in the estimate is lower than ε with
probability at least

1−
(
1− pISD(w)

)m
ε2NC(w)

(
1−

(
1− pISD(w)

)m) .
The above theorems allow us to derive the number of ISD calls we need to achieve a

fixed relative error in the estimate.

Corollary 3.3.6 (Number of ISD calls for Approximate WEP). Let ε ≥ 0 and ζ ∈ [0, 1],
and denote by mI and mII the minimum number of ISD calls that we need, respectively,
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so that estimators I and II achieve a relative error lower than ε with probability at least
1− ζ. Then, we have

mI ≥
(1− pISD(w))

ε2ζNC(w)pISD(w)
,

mII ≥
log (1 + ζε2NC(w))− log (ζε2NC(w))

log (1− pISD(w))
.

Interestingly, we can also derive the number of ISD calls we need, in order to derive an
exact estimate for NC(w). To this end, consider the following result.

Corollary 3.3.7 (Number of ISD calls for exact counting). Consider estimators I and
II, for weight w and m calls to ISD. Then to have that ⌊N∗

C(w)⌉ is equal to NC(w) with
probability at least 1− ζ (with ζ ≥ 0 and constant), we need

mI ≥
4NC(w)(1− pISD(w))

ζpISD(w)
,

mII ≥
log (1 + ζ/4NC(w))− log (ζ/4NC(w))

log (1− pISD(w))
.

Proof. We observe that ⌊N∗
C(w)⌉ = NC(w) if

NC(w)−
1

2
≤ N∗

C(w) ≤ NC(w) +
1

2
.

Since we are expressing the maximum error term, in absolute terms, as ±εNC(w), we set

ε =
1

2 ·Nc(w)
.

Substituting this into the value resulting from Cor. 3.3.6, we obtain the thesis.

Putting everything together, and considering the running time of ISD algorithms, we
can derive the resulting time complexity for our estimator, as a function of only (i) the
desired error term, (ii) the confidence in the estimate, and (iii) the performances of the
considered ISD algorithm.

Proposition 3.3.8 (Overall cost). Estimator I and II, using a ISD subroutine with cost
tISD(w), on input w and desiring a confidence interval ε ≥ 0 with probability at least 1− ζ,
have average time complexity respectively

mI · tISD(w) =
(1− pISD(w))

ε2ζNC(w)pISD(w)
· tISD(w),

mII · tISD(w) =
log (1 + ζε2NC(w))− log (ζε2NC(w))

log (1− pISD(w))
· tISD(w).

The above formulas can be instantiated with the desired ISD variant. In the following,
we describe how Estimator I complexity behaves if Lee&Brickell and Stern ISD are used.
Computing the associated complexity for Estimator II is straightforward.

Corollary 3.3.9. Estimator I, using Lee & Brickell subroutine, on input w and desiring
a confidence interval ε ≥ 0 with probability at least 1− ζ, has average time complexity(

1−
(
n−k
w−p

)(
k
p

)(
n
w

)−1
)

ε2ζNC(w)
·

(
n(n− k)2/pinv +

(
k
p

)
(q − 1)p

)
(
n−k
w−p

)(
k
p

)(
n
w

)−1 .
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Corollary 3.3.10. Estimator I, using Stern subroutine, on input w and desiring a confi-
dence interval ε ≥ 0 with probability at least 1− ζ, has average time complexity

(1−
( k+ℓ

2
p

)2(
n−k−ℓ
w−2p

)(
n
w

)−1

ε2ζNC(w)
·

(
n(n− k)2/pinv +

L2

qℓ
+ L

)
( k+ℓ

2
p

)2(
n−k−ℓ
w−2p

)(
n
w

)−1
.

3.3.4 Numerical Results
Table 3.9 shows the numerical results for a known sparse code obtained by the proposed
methods. The code a (504, 252) LDPC code taken from [MC09] and it has been chosen
since it is one of the code tested in [HMM05]. To achieve these results we followed the
approaches discussed in the previous subsections, using Stern’s variant with parameters
p = 2 and ℓ = 14. We employed an Intel Xeon Gold (2.30 GHz) processor equipped with
512 Gb RAM, stopping the algorithm after 300 iterations. It took about 143 hours to
complete all computations. Results are reported in Table 3.9.

w Approach in [HMM05] Estimator I Estimator II

20 0 0 0
22 38 38 40
24 171 170 170
26 372 371 373
28 1788 1788 1789
30 24460 24002 24008
32 66681 65788 65792

Table 3.9: Estimated weight distribution of the (504, 252) LDPC code from [MC09].

Similar estimates can be made for the (495, 433) LDPC code from [MC09]. In this
case, for each tested value of w, 1500 attempts were made. The ISD algorithm used for
all three estimators is Stern with parameters p = 2 and ℓ = 20. The computation takes
approximately 60 hours on our hardware. Results as reported in Table 3.10.

w Approach in [HMM05] Estimator I Estimator II

4 − 59 60
6 − 4436 4433
8 − 598134 596643
10 − 97205574 95509493
12 − 16914867181 17332975706
14 − 3052490293505 3126061305891
16 − 593031553106376 645685022171317

Table 3.10: Estimated weight distribution of the (495, 433) LDPC code from [MC09].

Notice that for the values of w which have been tested, the output results of the
estimator [HMM05] do not produce anything useful. This is not a surprise, according to
what has been shown in the previous subsections. In fact, even for the smallest case, w = 4,
we can use the rough estimate given by estimators I and II and say that

p∗ISD(4) ≈ 1− (1− pISD(4))
60 = 0, 9999998677.
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This says that running ISD on that particular code, with that specific weight, would
be unsuccessful less than once over a million attempts. As a consequence, to obtain a
reasonable estimate even with the method described in [HMM05], we would have to repeat
the experiment many more times than we did, and this was not an option, given the
computational power at our disposal.

Notice that [HMM05] provides actual estimates for the weight distribution of the code
described in Table 3.10. This difference can be explained both by the different hardware
and, more importantly, the difference in the number of attempts, which in Hirotomo, Mohri
and Morii’s case can be easily obtained by reversing Equation 3.18, obtaining, for w = 4,
m ≈ 99885664. In this case the estimated number of codewords for w ∈ {4, 6, 8, 10} is
respectively given by 60, 4436, 564458 and 16992863. No results are provided for larger
values of w.

A SageMath proof-of-concept implementation of these results can be found at https:
//github.com/triki96/WeightDistribution.
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Chapter 4

Theoretical Foundations and PoKs

“Since the appearance of public-key cryptography in the seminal Diffie-Hellman
paper, many new schemes have been proposed and many have been broken.
Thus, the simple fact that a cryptographic algorithm withstands cryptanalytic
attacks for several years is often considered as a kind of validation procedure. A
much more convincing line of research has tried to provide “provable” security
for cryptographic protocols.”

D. Pointcheval and J. Stern, 1997

Interactive proofs are a cornerstone of modern cryptography and, as such, used in
many areas, from digital signatures to multy-party computation. A standard method
of making them non-interactive and produce provably secure proofs is to apply the Fiat-
Shamir transform. In this context, often the knowledge error κ of the underlying interactive
proof is not small enough, and thus needs to be reduced. This is usually achieved by
repeating the interactive proof in parallel t times. Recently, it was shown that the t-
fold parallel repetition of any (k1, . . . , kµ)-special-sound multi-round public-coin interactive
proof reduces the knowledge error from κ to κt, which is optimal. Parallel repetition of
knowledge-sound interactive proofs improves security at the price of bigger transcripts. A
few generic techniques have been proposed to mitigate this issue, such as the seed tree,
multiple public key, and fixed-weight optimization. In this chapter, we focus on the latter
and analyze it under a security standpoint. In particular, in Section 4.2 we will analyze the
formal security of digital signatures obtained by modifying the Fiat-Shamir transform by
applying the fixed-weight optimization, while in Section 4.3 we focus on online-extractable
transforms, building a new one which is fixed-weight by design.

4.1 The Fixed-Weight Optimization
There are a variety of techniques aimed at improving the performance and efficiency of
the underlying interactive proof. Informally, these techniques can be explained as trans-
forming one interactive protocol into another. Some of them (like the Multiple Public Key
optimization) aim at limiting the number t of repetitions, obtaining an improvement in
both execution time and transcript size at the cost, for example, of bigger public keys.
Other techniques , on the other hand, aim at reducing the transcript size at the cost of a
slight increase in execution time. This is particularly desired when storage or transmission
latency are the main concern. Among the latter techniques, one of the most common
optimizations is using fixed-weight challenge vectors. The challenges are the random coins
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(a single value in the case of a 3-round interactive proof, a list of µ values in the case of a
(2µ+ 1)-round interactive proof) sent by the verifier to the prover. Here, by fixed-weight
challenge vectors, we mean vectors of challenges having a constant number of entries (for
which the last component is) equal to a fixed value. This optimization has proven to
be particularly helpful when different challenges have drastically-different response sizes
[Bal+23b; GPV24; Bar+21a; Cho+23b; RST23; Beu+23; BKP20].

Notation. In the following, for a finite set X, we write |X| for the cardinality of X
and by |x| we denote the number of bits necessary to represent an element x ∈ X. When
s is a list or a vector, we write (s)i to denote the i-th element of s. If S is a set whose
elements are lists or vectors, we define (S)i := {x : ∃s ∈ S : (s)i = x}. Given µ finite
sets Ch[1], . . . ,Ch[µ] and c ∈ Ch[1] × . . . × Ch[µ], we will write c = (c[1], . . . , c[µ]) where
c[i] ∈ Ch[i] for all i ∈ {1, . . . , µ}. Furthermore, given t ∈ N∗ and c ∈ (Ch[1] × . . .× Ch[µ])t,
we will write c = ((c)1, . . . , (c)t) where (c)j ∈ Ch[1] × · · · × Ch[µ] and (c)

[i]
j ∈ Ch[i] for all

j ∈ {1, . . . , t}, i ∈ {1, . . . , µ}.

Definition 4.1.1 (Weight). Let Ch be a finite set, t ∈ N∗ and c̃ ∈ Ch. For an element
c = ((c)1, . . . , (c)t) ∈ Cht, we define the weight of c with respect to c̃ as

wtc̃(c) := |{j ∈ {1, ..., t} : (c)j = c̃}|.

Definition 4.1.2. Let t,w, µ ∈ N∗ such that t ≥ w, let Ch[1], . . . ,Ch[µ] be finite sets and
let c̃ ∈ Ch[µ]. Given Ch = Ch[1]× . . .×Ch[µ], we denote by Cht,wc̃ the set of elements c ∈ Cht

for which wtc̃
(
(c)

[µ]
1 , . . . , (c)

[µ]
t

)
= w, i.e.

Cht,wc̃ :=
{
c ∈ Cht : wtc̃

((
(c)

[µ]
1 , . . . , (c)

[µ]
t

))
= w

}
.

When c̃ is clear from the context, we will simplify the notation and write Cht,w instead of
Cht,wc̃ . Furthermore, when Ch is not a Cartesian product but a simple set (i.e., µ = 1 and
so Ch = Ch[µ]), we will simply denote by Cht,wc̃ the set{

c = ((c)1, . . . , (c)t) ∈ Cht : wtc̃(c) = w
}
.

Definition 4.1.3 (Fixed-weight Repetition). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N∗, R ⊆ X×Y
be a binary relation and (P,V) be a (2µ + 1)−round public-coin interactive proof for R,
where V samples i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinality Ni ≥ ki.
Therefore, the challenge set of (P,V) is Ch =

∏µ
i=1 Ch

[i]. Let c̃ be a given element of Ch[µ].
A (t, w)-fixed-weight parallel repetition of (P,V) with respect to c̃, which we denote by
(Pt,w,Vt,w), is a t-fold parallel repetition of (P,V) whose challenge set is Cht,wc̃ .

Throughout this work, we will consider fixed-weight repetitions only for (2µ+1)−round
public-coin interactive proofs for which there exists a unique element c̃ ∈ Ch[µ] such that,
for every possible c = (c[1], . . . , c[µ]) ∈ Ch[1]× · · · ×Ch[µ], the response size when c[µ] = c̃ is
significantly higher than when c[µ] ̸= c̃. Under this assumption, a fixed-weight repetition
can lead to a more compact protocol compared to a plain parallel repetition, as it was
shown in [GPV24; Bar+21a; Bal+23b; Cho+23b; RST23].

Remark 4.1.4. In Definition 4.1.3, we choose to consider the fixed element c̃ as an element
of Ch[µ] rather than of the challenge set of previous rounds or a Cartesian product of (a
subset of) them. This is consistent with the concrete instances of the fixed-weight technique
that have appeared so far (see the list above).
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4.2 Security of Fixed-Weight Repetitions of Special-
Sound Multi-Round Proofs

The security of the fixed-weight optimization is well understood in the case of a 3-round,
public-coin, 2-special-sound interactive proof, i.e. µ = 1 and k1 = 2. In fact, in this case the
2-special soundness of the base interactive proof is preserved by the fixed-weight repetition
of the interactive proof. However, the picture becomes fuzzy when µ = 1 and k1 > 2,
and even more when µ > 1. In particular, already in the case of (k1, . . . , kµ)-special-sound
(2µ+ 1)-round public-coin interactive proofs with k1 > 2 it is not clear whether the fixed-
weight t-fold parallel repetition satisfies any useful notion of special soundness. In light
of this and the implications it would have on the provable security of existing signatures
like CROSS [Bal+23b] or [GPV24] and future protocols, the following research question
naturally arises:

Does a fixed-weight repetition of a (k1, . . . , kµ)-special-sound
(2µ+ 1)-round public-coin interactive proof enjoy knowledge soundness?

Building on the results from [AF22a] we positively answer the question above by ex-
plicitly building a knowledge extractor and precisely bounding the knowledge error. More
precisely, we prove that the t-fold repetition with fixed weight w of a (k1, . . . , kµ)-special-
sound (2µ + 1)-round interactive proof is knowledge sound. We also provide an explicit
expression for the knowledge error of the parallel repetition of the interactive proof. Such
knowledge error coincides with the maximum cheating probability of a dishonest prover,
which is directly derived from the maximum size of the set of challenges to which the prover
can answer without actually knowing a witness. This shows that our result is optimal and,
in addition, it allows to formally prove the security of the interactive proofs underlying
some recent post-quantum signatures, such as the code-based signature CROSS [Bal+23b]
and the SIDH-based signature of [GPV24].

Technical Overview. One of the main results of [AF22a] is a knowledge extractor
Ext for k-special-sound interactive proofs, whose success probability when applied to a
dishonest prover P∗ can be expressed in terms of a novel characterization of the power of
P∗. Specifically, the ability of P∗ to correctly answer to a random challenge is measured
by δk(P

∗), its worst-case success probability when k − 1 challenges are removed from
the challenge space. This new framework is particularly convenient when moving to the
parallel repetition of the interactive proof. In fact, starting from a dishonest prover P∗

against the t-parallel repetition of a k-special-sound interactive proof, it is possible to
build t provers P∗

1, . . . ,P
∗
t against the single instance of the interactive proof. By applying

the previous extractor in parallel to the provers of the single instance, the probability of
witness extraction can be expressed via δk(P

∗
1)+ . . .+δk(P

∗
t ). From this, an optimal bound

on the knowledge error of the parallel repetition is obtained.
The extraction algorithm Ext of [AF22a] queries the dishonest prover on uniformly-

sampled challenges. Instead, when we consider fixed-weight repetitions, challenges must
be sampled according to a different distribution. At the core of our result is therefore a
generalisation of the knowledge extractor from [AF22a] which allows for the sampling of
challenges according to an arbitrary distribution D over the challenge space. More in de-
tail, we show that the extraction probability is given by δk(P

∗,D)/k for a k-special-sound
interactive proof, where the probability space is defined by the challenges being sampled
according to D . For fixed-weight repetitions, we can then apply a similar approach as
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before: starting from a dishonest prover for the fixed-weight t-fold repetition of the inter-
active proof, we build t dishonest provers on the single instance of the interactive proof.
By applying the generalised extractor in parallel, we obtain a bound on the knowledge
error of the parallel repetition of the interactive proof (Subsection 4.2.2). A similar strat-
egy is then applied to prove knowledge soundness of fixed-weight repetitions of generic
(k1, . . . , kµ)-special-sound (2µ + 1)-round interactive proofs. In particular, we first gener-
alise the multi-round extractor from [AF22a] over arbitrary distributions and then apply
it to fixed-weight repetitions (Subsection 4.2.3).

Although the resulting bounds cannot be expressed directly in terms of the knowl-
edge error of a single instance, the obtained knowledge errors coincide with the maximum
cheating probability of a dishonest prover, meaning that our result is optimal. As already
observed, the maximum cheating probability of a dishonest prover is derived from the
maximum size of the set of challenges to which the prover can answer without actually
knowing a witness. We have translated the problem of computing these sizes into finding
upper bounds for the cardinality of particular subsets of the Cartesian product of finite sets
which satisfy some conditions on the components. In particular, we compute the maximum
size of a set of sequences when we limit the number of different values that may appear in
any single component (Subsection 4.2.1). These combinatorial results, from which a bound
on the knowledge error of fixed-weight repetitions is deduced, may be of independent inter-
est and find application in independent scenarios, and so we have formulated and proved
them in full generality.

Organization. In Subsection 4.2.1 we discuss some combinatorial results that, while
interesting on their own, will be essential for Subsections 4.2.2 and 4.2.3, which contain
the core cryptographic results of our work. In particular, Subsection 4.2.2 deals with the
easier case of 3-round interactive proofs, while Subsection 4.2.3 deals with the general
multi-round case. Lastly, in Subsection 4.2.4 we identify some applications and future
research directions.

4.2.1 Combinatorial Bounds
To prove that a fixed-weight repetition of a special-sound interactive proof still enjoys
knowledge soundness, we will rely on some combinatorial bounds. These bounds appear to
be of independent interest, and for this reason we will state and prove them in full generality
in this subsection. Nevertheless, as they will find a natural application in Subsections 4.2.2
and 4.2.3, we will try to use the same notation that will be used there.

High-Level Overview

Here we provide a high-level overview of the subsection. By reading this introduction, a
reader not interested in engaging with every formal step necessary to rigorously prove the
combinatorial results can have a summary of the most significant outcomes.

The main problem addressed in this subsection arises from the need to estimate, for
the fixed-weight repetition of a given special-sound interactive proof, the maximum success
probability of a dishonest prover. This is derived from the maximum cardinality of the
sets of transcripts/challenges from which it is not possible to extract a witness.

In Proposition 4.2.1 of Subsection 4.2.1, we quantify the maximum cardinality of the
sets S ⊆ Cht,wc̃ such that |(S)i| ≤ k for all i ∈ {1, . . . , t}, where Ch is the finite challenge
space of a k-special-sound 3-round interactive proof, c̃ ∈ Ch and w ≤ t are two positive
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integers. In particular, it holds that:

|S| ≤
(
w(k − 1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1)

if t ≥ w(k − 1), and:

|S| ≤
(
t

w

)
(k − 2)t−w

otherwise.
Subsection 4.2.1 aims at giving a bound for multi-round interactive proofs, where the

situation is more involved. For this reason, we give a formal definition of the sets of tran-
scripts/challenges from which it is not possible to extract a witness. For convenience,
we refer to such sets as acceptable sets (Definition 4.2.4). To simplify the computation,
we resort to Lemma 4.2.8, which skims these sets, and reduce the considered problem to
finding the maximum over a specific classes of acceptable sets, which we call saturated
acceptable sets. Following Definition 4.2.9, we can characterize each saturated acceptable
set via a sequence (di,bi)i∈{1,...,t} that basically represents the cardinality of some specific
subsets. More precisely, Lemma 4.2.10 shows that the cardinality of a saturated acceptable
set can be expressed by a formula which depends on its sequence (di,bi)i∈{1,...,t}, and that
two other important properties are satisfied by (di,bi)i∈{1,...,t} (Equation (4.2) and Equa-
tion (4.3)). Then, by relying on a technical lemma on sequences of non-negative integers
(Lemma 4.2.11), we prove in Proposition 4.2.12 an upper bound for the cardinalities of
acceptable sets.

Bound for the 3-round case

Let us consider a finite set Ch with a fixed element c̃ ∈ Ch, and three positive integers k, t,w
such that |Ch| ≥ k ≥ 2 and t ≥ w. Our first result is an upper bound of the cardinality
of particular sets S ⊆ Cht,wc̃ such that |(S)i| ≤ k for all i ∈ {1, . . . , t}. This mathematical
question arises in the context of a k-special-sound 3-round interactive proof for which we
consider a (t, w)-fixed-weight parallel repetition. The maximum cheating probability of a
dishonest prover in this case can be estimated by means of the above bound (dividing it
by the total cardinality of Cht,wc̃ ).

Proposition 4.2.1. Given S ⊆ Cht,wc̃ such that |(S)i| < k for all i ∈ {1, . . . , t}, we have
that, if t ≥ w(k − 1):

|S| ≤
(
w(k − 1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1),

and otherwise:
|S| ≤

(
t

w

)
(k − 2)t−w.

Proof. Since k = 2 trivially implies |S| ≤ 1 =
(
w
w

)
001t−w, in the remainder we suppose

k ≥ 31.
For s ∈ S, let us define Z(s) as the set of indices i ∈ {1, . . . , t} such that the i-th

entry of s is equal to c̃. The set Z(S) :=
⋃

s∈S Z(s) is therefore formed by all indices i for
which at least one element of S has c̃ as i-th entry. We denote |Z(S)| by hS , for which

1Here we used 00 = 1, which is a common convention in discrete mathematics, as it comes handy in
many situations (e.g. the binomial theorem). For more details on this convention, see [Knu92].
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holds hS ≥ w by definition of Cht,wc̃ . As our goal is providing an upper bound for the
cardinality of S, we can assume that, for each i ∈ {1, . . . , t}, it holds that |(S)i| = k − 1,
with c̃ ∈ (S)i if and only if i ∈ Z(S). Every element s of S can be thought as constructed
by the following strategy. Choose a subset R of cardinality w from Z(S) and, for every
i ∈ R, set the i-th entry of s to c̃; for every i ∈ Z(S)\R choose a value in (S)i \{c̃}; finally,
for every i ∈ {1, . . . , t} \ Z(S), choose a value in (S)i. This means that |S| is bounded
above by:

f(hS) :=

(
hS
w

)
(k − 2)hS−w(k − 1)t−hS . (4.1)

We note that
(
hS
w

)
(k − 2)hS−w is monotonically increasing with ratio:(

hS+1
w

)
(k − 2)hS+1−w(

hS
w

)
(k − 2)hS−w

=
hS + 1

hS + 1− w
(k − 2),

while (k − 1)t−hS is monotonically decreasing with ratio:

(k − 1)t−hS

(k − 1)t−(hS+1)
= k − 1.

This means that f is increasing as long as

hS + 1

hS + 1− w
(k − 2) > k − 1 ⇐⇒ hS < w(k − 1)− 1.

In conclusion, since f(w(k − 1)− 1) = f(w(k − 1)), if t ≥ w(k − 1) we have

|S| ≤ f
(
w(k − 1)

)
=

(
w(k − 1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1).

On the other hand, if t < w(k − 1), then f is increasing up to t, so:

|S| ≤ f(t) =

(
t

w

)
(k − 2)t−w.

We now want to generalise the above result to a setting where the set Ch is replaced
by the Cartesian product of µ finite sets Ch[1], . . . ,Ch[µ], i.e. Ch :=

∏µ
ℓ=1 Ch

[ℓ], and we
fix an element c̃ in Ch[µ]. We formalise such generalisation in the following definitions, by
introducing the concept of acceptable sets.

Bound for the (2µ+ 1)-round case

In the remainder of this subsection k1, . . . , kµ, N1, . . . , Nµ will denote positive integers
while Ch[1], . . . ,Ch[µ] finite sets such that |Ch[ℓ]| = Nℓ ≥ kℓ ≥ 2 ∀ℓ ∈ {1, . . . , µ}. We set
Ch =

∏µ
ℓ=1 Ch

[ℓ].

Definition 4.2.2. For any S ⊆ Ch, ℓ ∈ {2, . . . , µ} and (s1, . . . , sℓ−1) ∈
∏ℓ−1

j=1 Ch
[j], we

define:
Sℓ(s1, . . . , sℓ−1) := {s ∈ Ch[ℓ] : ∃ (s1, . . . , sℓ−1, s, rℓ+1, . . . , rµ) ∈ S}.

Informally, Sℓ(s1, . . . , sℓ−1) denotes the set of ℓ-th entries of the elements of S with the
first ℓ− 1 entries equal to (s1, . . . , sℓ−1).
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Definition 4.2.3 (Acceptability Predicate). Given S ⊆ Ch, for any (a1, . . . , aµ) ∈ Ch we
define the predicate PS,µ as follows:

PS,µ((a1, . . . , aµ)) ⇐⇒ (a1, . . . , aµ) ∈ S.

For ℓ ∈ {1, . . . , µ− 1}, the predicate PS,ℓ((a1, . . . , aℓ)) is true if and only if:

|{(a1, . . . , aℓ, aℓ+1) : aℓ+1 ∈ Sℓ+1(a1, . . . , aℓ) ∧ PS,ℓ+1(a1, . . . , aℓ+1)}| ≥ kℓ+1.

Analogously to the previous subsection, we aim at finding an upper bound of the
cardinality of particular sets S ⊆ Cht,wc̃ that do not define a (k1, . . . , kµ)-tree of accepting
transcripts in the context of Definition 1.1.15. We call these sets acceptable sets. The
mentioned bound determines the maximum cheating probability of a dishonest prover
in the case of a (k1, . . . , kµ)-special-sound (2µ + 1)-round interactive proof for which we
consider a (t, w)-fixed-weight parallel repetition.

Definition 4.2.4 (Acceptable Set). Given A ⊆ Cht,wc̃ , we say that it is a (k1, . . . , kµ)-out-
of-(N1, . . . , Nµ) acceptable set (or, when clear from the context, simply acceptable set) if
the following condition holds:

|{a1 : a1 ∈ (A)
[1]
i ∧ P(A)i,1(a1)}| < k1 ∀i ∈ {1, . . . , t}.

In this work a subfamily of acceptable sets are of particular importance. We name them
saturated acceptable sets. Before formally defining them, we provide some introductive
definitions.

Definition 4.2.5 (Saturating Choice). Given µ finite sets Ch[1], . . . ,Ch[µ], and ∀ℓ ∈ {1, . . . , µ},
kℓ ≤ |Ch[ℓ]|, a saturating choice is a pair (S, B̄) such that:

• S ⊆
⋃µ−1

ℓ=0

∏ℓ
j=1 Ch

[j] is a set of sequences;

• B̄ : S →
⋃µ

ℓ=1 P(Ch
[ℓ]) is a function such that for every s ∈ S with |s| = ℓ, associates

to s a set B̄(s) ⊆ Ch[ℓ+1], where P(Ch[ℓ]) denotes the power set of Ch[ℓ].

Furthermore, the pair (S, B̄) satisfies the following properties:

• ∅ ∈ S, where ∅ denotes the empty sequence;

• B̄(∅) ⊆ Ch[1] is such that |B̄(∅)| = k1 − 1;

• ∀a1 ∈ Ch[1] \ B̄(∅), (a1) ∈ S;

• ∀(a1) ∈ S, B̄((a1)) ⊆ Ch[2] is a set such that |B̄((a1))| = k2 − 1;

and, inductively for ℓ ∈ {2, . . . , µ− 1}:

• ∀(a1, . . . , aℓ) ∈
∏ℓ

j=1

(
Ch[j] \ B̄((a1, . . . , aj−1))

)
, (a1, . . . , aℓ) ∈ S;

• ∀(a1, . . . , aℓ) ∈ S, B̄((a1, . . . , aℓ)) ⊆ Ch[ℓ+1] satisfies |B̄((a1, . . . , aℓ))| = kℓ+1 − 1.

Definition 4.2.6. Given µ finite sets Ch[1], . . . ,Ch[µ], ℓ < µ, kℓ+1 ≤ |Ch[ℓ+1]|, a sequence
(a1, . . . , aℓ) ∈

∏ℓ
j=1 Ch

[j], and a set B̄ ⊆ Ch[ℓ+1] such that |B̄| = kℓ+1 − 1, we can define
the set:

sati((a1, . . . , aℓ), B̄) :=
{
(a1, . . . , aℓ, aℓ+1, aℓ+2, . . . , aµ) :

aℓ+1 ∈ B̄ ∧ (aℓ+2, . . . , aµ) ∈
µ∏

j=ℓ+2

Ch[j]
}
.
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Definition 4.2.7 (Saturated Acceptable Set). Given Ā ⊆ Cht,wc̃ , we say that it is a
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) saturated acceptable set (or, when clear from the context,
simply saturated acceptable set) if ∀i ∈ {1, . . . , t}, there is a saturating choice (Si, B̄i) such
that (Ā)i =

⊔
s∈Si

sati(s, B̄i(s)) (see Definitions 4.2.5 and 4.2.6). Moreover we have that
∀((y)1, . . . , (y)t) ∈

∏t
i=1(Ā)i

⋂
Cht,wc̃ , ((y)1, . . . , (y)t) ∈ Ā.

Note that sets that satisfy Definition 4.2.7 are indeed acceptable sets because, by con-
struction, we have that:

|{a1 : a1 ∈ (A)
[1]
i ∧ P(A)i,1(a1)}| = k1 − 1, ∀i ∈ {1, . . . , t}.

In fact, the saturating choices (Si, B̄i) have the property that, ∀ℓ ∈ {1, . . . , µ}:

|{s ∈ Si : (s, aℓ+1, . . . , aµ) ∈ (A)i ∧ P(A)i,ℓ(s)}| = kℓ − 1.

This gives the intuition that there is no margin left to add more elements to saturated
acceptable sets while retaining their acceptability. More formally, the following lemma
proves that every maximal acceptable set is a saturated acceptable set.

Lemma 4.2.8 (Maximality of Saturated Acceptable Sets). For every
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) acceptable set A ⊆ Cht,wc̃ there exists a saturated acceptable
set Ā ⊆ Cht,wc̃ such that Ā ⊇ A.

Proof. Let A ⊆ Cht,wc̃ be a (k1, . . . , kµ)-out-of (N1, . . . , Nµ) acceptable set. To construct
a saturated acceptable set Ā ⊆ Cht,wc̃ which contains A, we will build an appropriate
saturating choice (see Definition 4.2.5) (Si, B̄i) for all i ∈ t. We initially set Si := {∅} and
then iteratively add elements to it. Let us define Bi(∅) := {a1 : a1 ∈ (A)

[1]
i ∧ P(A)i,1(a1)}.

By definition of acceptable set, we have that |Bi(∅)| ≤ k1 − 1, so we can define B̄i(∅) ⊆
Ch[1] to be a set such that Bi(∅) ⊆ B̄i(∅) and |B̄i(∅)| = k1 − 1.

For each a1 ∈ Ch[1] \ B̄i(∅), we add (a1) to Si, and we define the set

Bi((a1)) :=
{
a2 : a2 ∈ (A)

[2]
i ∧ P(A)i,2((a1, a2))

}
.

Again, by definition of acceptable set, we have that |Bi((a1))| ≤ k2 − 1, so we can define
B̄i((a1)) ⊆ Ch[2] to be a set such that Bi((a1)) ⊆ B̄i((a1)) and |B̄i((a1))| = k2 − 1.

In general, for ℓ ∈ {2, . . . , µ − 1} and for any aℓ ∈ Ch[ℓ] \ B̄i((a1, . . . , aℓ−1)), we add
(a1, . . . , aℓ) to Si and define:

Bi((a1, . . . , aℓ)) :=
{
aℓ+1 : aℓ+1 ∈ (A)

[ℓ+1]
i ∧ P(A)i,ℓ+1((a1, . . . , aℓ, aℓ+1)

}
.

As before, we have that |Bi((a1, . . . , aℓ))| ≤ kℓ+1−1, so it is possible to define B̄i((a1, . . . , aℓ)) ⊆
Ch[ℓ+1] as a set such that:

Bi((a1, . . . , aℓ)) ⊆ B̄i((a1, . . . , aℓ)) ∧ |B̄i((a1, . . . , aℓ))| = kℓ+1 − 1.

By construction, the saturated acceptable set Ā associated to these saturating choices
(Si, B̄i)i∈{1,...,t} contains (A)i.

Definition 4.2.9. Given a saturated acceptable set Ā ⊆ Cht,wc̃ , it is possible to associate to
Ā a set of t-sequences

{(
d(Ā)1,b1 , . . . , d(Ā)t,bt

)
: (b1, . . . , bt) ∈ (Ch[µ])t,wc̃

}
, where we define:

d(Ā)i,bi := |
{
(a)i ∈ (Ā)i : (a)

[µ]
i = bi

}
| ∀i ∈ {1, . . . , t}.
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The result below provides a first upper bound on the cardinality of a saturated accept-
able set by building on the t-sequences defined above.

Lemma 4.2.10. Let Ā ⊆ Cht,wc̃ be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) saturated acceptable
set. Then, for every i ∈ {1, . . . , t}:

∑
x∈Ch[µ]

d(Ā)i,x =

µ∑
ℓ=1

 µ∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ; (4.2)

d(Ā)i,c̃ ≥
µ−1∑
ℓ=1

 µ−1∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ; (4.3)

and |Ā| =
∑

b∈(Ch[µ])t,wc̃

∏t
i=1 d(Ā)i,(b)i .

Proof. Let Ā ⊆ Cht,wc̃ be a (k1, . . . , kµ)-out-of (N1, . . . , Nµ) saturated acceptable set. By
Definition 4.2.5 and 4.2.6, we have that, for all i ∈ {1, . . . , t}, ℓ ∈ {0, . . . , µ−1}, and s ∈ Si
such that |s| = ℓ:

|sati(s, B̄i(s))| = (kℓ+1 − 1) ·
µ∏

j=ℓ+2

Nj .

Moreover, note that for ℓ > 0 there are Nℓ − kℓ + 1 choices for the last element of s if we
fix the first ℓ− 1, so in total we have that:

|{s ∈ Si : |s| = ℓ}| =
ℓ∏

j=1

(Nj − kj + 1).

Putting everything together, setting to 1 the empty product, we have that:

|
⊔

s∈Si : |s|=ℓ

sati(s, B̄i(s))| =

 ℓ∏
j=1

(Nj − kj + 1)

 (kℓ+1 − 1)

 µ∏
j=ℓ+2

Nj

 ,

so, by Definition 4.2.7 we have the following relation:

|(Ā)i| =
µ∑

ℓ=1

 µ∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 . (4.4)

Thanks to the second condition of Definition 4.2.7, we have that:

(Ā)i =
⊔

x∈Ch[µ]

{
(a)i ∈ (Ā)i : (a)

[µ]
i = x

}
,

as for every (y)i ∈ (Ā)i there exist (y)1, . . . , (y)i−1, (y)i, . . . , (y)t such that ((y)1, . . . , (y)t) ∈
Ā. So by Definition 4.2.9 we have proved Equation (4.2). Another direct consequence of
this is that |Ā| =

∑
b∈{Ch[µ]}t,wc̃

∏t
i=1 d(Ā)i,(b)i .

Finally, for any i ∈ {1, . . . , t} we have that:

d(Ā)i,c̃ ≥
µ−1∑
ℓ=1

 µ−1∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ,

as the right-hand side corresponds to the number of saturated branches in (Ā)i, i.e. the
number of elements ((y)

[1]
i , . . . , (y)

[µ−1]
i ) ∈

∏µ−1
i=1 Ch[i] such that, for every x in Ch[µ], the

element ((y)
[1]
i , . . . , (y)

[µ−1]
i , x) belongs to (Ā)i.
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The result we present below is a technical lemma regarding the property of a particular
sequence of sequences It will be a key step in proving the maximum cardinality among the
acceptable sets.

Lemma 4.2.11. Let w ≤ t, N,Z0, Z1, Z2 be positive integers and consider t sequences
of non-negative integers (di,0, . . . , di,N )i∈{1,...,t} such that, for every i ∈ {1, . . . , t}, it holds
that:

di,0 ∈ {Z0, Z2} ,
N∑
j=0

di,j = Z1.

Let α := | {i : di,0 = Z0} |, ℓ0 := max(0,w − t+ α), and ℓ1 := min(w, α). Then:

∑
b∈St,w

t∏
i=1

di,bi =

ℓ1∑
ℓ=ℓ0

(
α

ℓ

)(
t− α

w − ℓ

)
Zℓ
0 (Z1 − Z0)

α−ℓ (Z2)
w−ℓ(Z1 − Z2)

t−α−w+ℓ, (4.5)

where St,w := {0, . . . , N}t,w0 (see Definition 4.1.2).

Proof. Given b ∈ St,w, let us define four support sets:

B1,b := {i ∈ {1, . . . , t} : bi = 0 ∧ di,0 = Z0},
B2,b := {i ∈ {1, . . . , t} : bi = 0 ∧ di,0 = Z2},
B3,b := {i ∈ {1, . . . , t} : bi ̸= 0 ∧ di,0 = Z0},
B4,b := {i ∈ {1, . . . , t} : bi ̸= 0 ∧ di,0 = Z2}.

It clearly holds that t = |
⊔4

j=1Bj,b|, α = |B1,b
⊔
B3,b|, w = |B1,b

⊔
B2,b|. Therefore, we

have:

∑
b∈St,w

t∏
i=1

di,bi =
∑

b∈St,w

4∏
j=1

 ∏
i∈Bj,b

di,bi


=
∑

b∈St,w

∏
i∈B1,b

di,0
∏

i∈B2,b

di,0
∏

i∈B3,b

di,bi
∏

i∈B4,b

di,bi

=
∑

b∈St,w

∏
i∈B1,b

Z0

∏
i∈B2,b

Z2

∏
i∈B3,b

di,bi
∏

i∈B4,b

di,bi .

Now let us consider two disjunct sets B1, B2 ⊆ {1, . . . , t}, with ℓ := |B1|. In order for the
set B′ := {b ∈ St,w : B1,b = B1 ∧B2,b = B2} to be non-empty, we have that ℓ ≤ min(w, α),
and also |B2| = w − ℓ ≤ t− α, i.e., ℓ ≥ max(0,w − t+ α). Now, we have that:

∑
b∈B′

t∏
i=1

di,bi =
∑
b∈B′

∏
i∈B1,b

Z0

∏
i∈B2,b

Z2

∏
i∈B3,b

di,bi
∏

i∈B4,b

di,bi

=
∑
b∈B′

(Z0)
ℓ(Z2)

w−ℓ
∏

i∈B3,b

di,bi
∏

i∈B4,b

di,bi .
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It is straightforward to see that, for any i′ ∈ {1, . . . , t}, the equality below holds:

St,w =

 ⊔
b′∈St−1,w

N⊔
j=1

{
(b′1, . . . , b

′
i′−1, j, b

′
i′ , . . . , b

′
t−1)

}
⊔
 ⊔

b′∈St−1,w−1

{
(b′1, . . . , b

′
i′−1, 0, b

′
i′ , . . . , b

′
t−1)

} .

Now we want to adapt this partition to our set B′ ⊆ St,w by considering an index i′ in
{1, . . . , t} \ (B1

⊔
B2). Let us define an index-translation function fi′ : {1, . . . , t − 1} −→

{1, . . . , t} \ {i′}:

fi′(i) :=

{
i if i < i′;

i+ 1 if i ≥ i′.

Then, we can define the following subsets of {1, . . . , t− 1}:

B1(i
′) := {i : fi′(i) ∈ B1}, B2(i

′) := {i : fi′(i) ∈ B2},

and introduce the set:

B′(i′) := {b ∈ St−1,w : {i ∈ {1, . . . , t− 1} : bi = 0 ∧ dfi′ (i),0 = Z0} = B1(i
′)∧

∧{i ∈ {1, . . . , t− 1} : bi = 0 ∧ dfi′ (i),0 = Z2} = B2(i
′)}.

We have that:

B′ =
⊔

b′∈B′(i′)

N⊔
j=1

{
(b′1, . . . , b

′
i′−1, j, b

′
i′ , . . . , b

′
t−1)

}
.

Let us define also:

B3(i
′) := {i ∈ {1, . . . , t− 1} : fi′(i) /∈ B1

⊔
B2 ∧ dfi′ (i),0 = Z0};

B4(i
′) := {i ∈ {1, . . . , t− 1} : fi′(i) /∈ B1

⊔
B2 ∧ dfi′ (i),0 = Z2}.

88



CHAPTER 4. THEORETICAL FOUNDATIONS AND POKS

We can use this partition in our sum. We first assume di′,0 = Z0, which leads to:

∑
b∈B′

t∏
i=1

di,bi = (Z0)
ℓ(Z2)

w−ℓ
∑
b∈B′

 ∏
i∈B3,b

di,bi
∏

i∈B4,b

di,bi


= (Z0)

ℓ(Z2)
w−ℓ

∑
b′∈B′(i′)

N∑
j=1

di′,j
∏

i∈B3(i′)

dfi′ (i),b′i

∏
i∈B4(i′)

dfi′ (i),b′i


= (Z0)

ℓ(Z2)
w−ℓ

∑
b′∈B′(i′)

 N∑
j=1

di′,j

 ∏
i∈B3(i′)

dfi′ (i),b′i

∏
i∈B4(i′)

dfi′ (i),b′i


= (Z0)

ℓ(Z2)
w−ℓ

∑
b′∈B′(i′)

 N∑
j=0

di′,j

− di′,0

 ∏
i∈B3(i′)

dfi′ (i),b′i

∏
i∈B4(i′)

dfi′ (i),b′i


= (Z0)

ℓ(Z2)
w−ℓ

∑
b′∈B′(i′)

(Z1 − Z0)

 ∏
i∈B3(i′)

dfi′ (i),b′i

∏
i∈B4(i′)

dfi′ (i),b′i


= (Z0)

ℓ(Z2)
w−ℓ(Z1 − Z0)

∑
b′∈B′(i′)

 ∏
i∈B3(i′)

dfi′ (i),b′i

∏
i∈B4(i′)

dfi′ (i),b′i

 .

Note that in this way we have effectively extracted the factor corresponding to the index i′

without affecting the other indices, and note also that in the case where di′,0 = Z2, the only
difference is that we can factor out (Z1−Z2) instead of (Z1−Z0). If we repeat this technique
starting from B′(i′) (whose elements have length t−1) instead of B′ (whose elements have
length t), we can factor out another index. This means that, by repeating the same
partition and factoring technique for every i′ ∈ {1, . . . , t} \ (B1

⊔
B2), and remembering

that for any b ∈ B′ we have |B3,b| = α− ℓ and |B4,b| = t− α− w+ ℓ, we obtain:

∑
b∈B′

t∏
i=1

di,bi = (Z0)
ℓ(Z2)

w−ℓ(Z1 − Z0)
α−ℓ(Z1 − Z2)

t−α−w+ℓ.

To conclude, note that for ℓ fixed there are
(
α
ℓ

)
possible choices for B1 and

(
t−α
w−ℓ

)
possible

choices for B2, and that by varying ℓ, the set of all the possible B′ forms a partition of
St,w.

The following result provides an upper bound for the cardinalities of (saturated) ac-
ceptable sets.

Proposition 4.2.12. Denote by nt,w the maximum cardinality of a (k1, . . . , kµ)-out-of-
(N1, . . . , Nµ) acceptable set. Then, nt,w is the maximum of the expression:

min(w,α)∑
ℓ=max(0,w−t+α)

(
α

ℓ

)(
t− α

w − ℓ

)
Zℓ
0 (Z1 − Z0)

α−ℓ (Z2)
w−ℓ(Z1 − Z2)

t−α−w+ℓ,
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where the maximum is taken over α ∈ {0, . . . , t} and

Z0 :=

µ−1∏
ℓ=1

Nℓ; (4.6)

Z1 :=

µ∑
ℓ=1

 µ∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ; (4.7)

Z2 :=

µ−1∑
ℓ=1

 µ−1∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 . (4.8)

Proof. Notice that, thanks to Lemma 4.2.8, we can always limit ourselves to consider
saturated acceptable sets Ā for which, thanks to Lemma 4.2.10, the following conditions
hold for every i ∈ {1, . . . , t}:∑

x∈Ch[µ]
d(Ā)i,x = Z1, d(Ā)i,c̃ ≥ Z2, (4.9)

with Z1, Z2 as in Eq. (4.7) and (4.8), respectively. In addition,

nt,w := max
A
{|A|} = max

Ā

{
|Ā|
}
= max

Ā


∑

b∈(Ch[µ])t,wc̃

t∏
i=1

d(Ā)i,(b)i

 . (4.10)

For simplicity of notation we remove below the dependence from Ā, meaning that we replace
d(Ā)i,x with di,x, with x ∈ {0, . . . , Nµ − 1}. Furthermore, we biject the elements of Ch[µ]

with the set {0, . . . , Nµ−1} mapping c̃ to 0, and again we define St,w := {0, . . . , Nµ−1}t,w0 .
According to this, we will also denote by {(d̄i,0, . . . , d̄i,Nµ−1)}i∈{1,...,t} a generic set that
respects the conditions imposed by Equation (4.9). We would therefore like to find a valid
assignment of (d̄i,j)i,j that maximizes the expression above. We show that it is sufficient
to consider sets such that, for each index i ∈ {1, . . . , t},(

d̄i,0,

Nµ−1∑
j=1

d̄i,j

)
∈ {(Z0, Z1 − Z0), (Z2, Z1 − Z2)} . (4.11)

Consider the case i = 1 (the extension to the generic case i ̸= 1 is immediate) and notice
that:

nt,w = max

{
d̄1,0

∑
(b2,...,bt)∈St−1,w−1

t∏
i=2

d̄i,bi +

Nµ−1∑
j=1

d̄1,j

 ∑
(b2,...,bt)∈St−1,w

t∏
i=2

d̄i,bi

}
.

Let us consider the two sums in the expression above, namely∑
(b2,...,bt)∈St−1,w−1

t∏
i=2

d̄i,bi and
∑

(b2,...,bt)∈St−1,w

t∏
i=2

d̄i,bi .

Depending on whether the first sum is larger or smaller than the second, we can max-
imize the entire expression by maximizing the factor that multiplies the largest sum. Ac-
cording to this, we can maximize nt,w by maximizing either d̄1,0 or

∑Nµ−1
j=1 d̄1,j . In partic-

ular, if we have that: ∑
(b2,...,bt)∈St−1,w−1

t∏
i=2

d̄i,bi ≥
∑

(b2,...,bt)∈St−1,w

t∏
i=2

d̄i,bi ,
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then the maximum is obtained when we take d̄1,0 =
∏µ−1

ℓ=1 Nℓ = Z0 (and consequently∑Nµ−1
j=1 d̄1,j = Z1 − Z0). Otherwise, since d̄1,0 is always greater or equal than Z2, we can

maximize the expression by choosing
∑Nµ−1

j=1 d̄1,j = Z1 − Z2 and d̄1,0 = Z2.
Since we can consider only sets of this type when maximizing Eq. 4.10, Lemma 4.2.11

applies with Z0, Z1 and Z2 respectively as in Eq. (4.6), (4.7) and (4.8), N := Nµ− 1. This
concludes the proof.

4.2.2 Fixed-Weight Repetition of a k-Special-Sound Sigma
Protocol

Let (P,V) be a k-special-sound Sigma protocol, with challenge space Ch of cardinality N .
We make a two-fold assumption on the protocol:

• the knowledge error (k − 1)/N is not negligible in the security parameter;

• the response size for a specific challenge c̃ ∈ Ch significantly exceeds the response
sizes for the other challenges.

To reduce the knowledge error while limiting the increase in the overall response size,
a common technique is to repeat the interactive proof in parallel t times, with exactly
w repetitions using the unfavourable challenge c̃. We denote by (Pt,w,Vt,w) the resulting
protocol. In this section, we want to prove that such scheme is knowledge sound. To this
end, we first slightly generalize the notation and results in [AF22a] by, at times, replacing
the uniform distribution with an arbitrary one.

A dishonest prover against the Sigma protocol (P,V) can be described as an arbitrary
(possibly probabilistic) algorithm A : Ch → {0, 1}∗. Let Vf : Ch × {0, 1}∗ → {0, 1} be a
verification function. Throughout this section D will denote a probability distribution over
Ch with support Ch. We define the D-success probability of A as

εVf(A,D) = Pr[Vf(C,A(C)) = 1],

where the probability space is defined by C being sampled from Ch according to the
probability distribution D and by the randomness ofA. When D is the uniform distribution
over Ch, we simply write εVf(A). Similarly, we adapt the worst-case success probability of
A for a random challenge when k − 1 challenges are removed from Ch, as follows:

δVfk (A,D) = min
S⊂Ch:|S|=k−1

Pr[Vf(C,A(C)) = 1 |C ̸∈ S ].

It is easily seen that δVf1 (A,D) = εVf(A,D). Moreover, in the following lemma we prove
that δVfk (A,D) is a decreasing function in k for any choice of D .

Lemma 4.2.13. Let D be a probability distribution over Ch. Then, for all k ∈ N∗,

δVfk+1(A,D) ≤ δVfk (A,D).

Proof. Let C be a random variable distributed as D and let S ⊆ Ch be such that it
minimizes δVfk (A,D). Moreover, let S̄ = Ch \ S and S̄′ = {c ∈ S̄ | Vf(c,A(c)) = 1}. Then,
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for any c′ ∈ S̄′, we have

δVfk+1(A,D) ≤ Pr
[
Vf(C,A(C)) = 1

∣∣C ̸∈ S ∪ {c′}
]

=

(∑
c∈S̄′ Pr[C = c]

)
− Pr[C = c′](∑

c∈S̄ Pr[C = c]
)
− Pr[C = c′]

≤
∑

c∈S̄′ Pr[C = c]∑
c∈S̄ Pr[C = c]

= δVfk (A,D).

where the second inequality follows by observing that S̄′ ⊆ S̄, and
∑

c∈S̄′ Pr[C = c] ≤∑
c∈S̄ Pr[C = c].

In the following, we also consider the restriction D |S of D to a subset S ⊆ Ch.

Definition 4.2.14 (Distribution Restriction). Let D be a probability distribution over Ch
and let X ∼ D . For any subset S ⊆ Ch, the restriction D |S of D to S is defined by the
following density function

Pr[X|S = x] =
Pr[X = x]∑

x′∈S Pr[X = x′]
, for all x ∈ S.

Input: k ∈ N∗, Ch a finite set with |Ch| = N ≥ k and S ⊆ Ch with |S| ≥ k.
Oracle access: algorithm A : Ch→ {0, 1}∗ and verification function Vf : Ch×{0, 1}∗ → {0, 1}.
Output: if successful, (c1, y1), . . . , (ck, yk) ∈ Ch × {0, 1}∗ with Vf(ci, yi) = 1 for all i and
ci ̸= cj for i ̸= j, otherwise ⊥.

1: Sample c1 ∈ S according to D |S and obtain y1 ← A(c1)
2: if Vf(c1, y1) = 0 then abort and output ⊥
3: end if
4: if Vf(c1, y1) = 1 and k = 1 then output (c1, y1) ∈ Ch× {0, 1}∗
5: else
6: repeat
7: set S′ = S \ {c1} and run ExtA(D |S′)
8: set coin← Vf(d,A(d)) with d ∈ S sampled according to D |S
9: until ExtA(D |S′) outputs (c2, y2), . . . , (ck, yk) or coin = 1

10: end if
11: if coin = 1 then return ⊥
12: else return (c1, y1), . . . , (ck, yk)
13: end if

Figure 4.1: Extractor ExtA(D |S)

A simple adaptation of [AF22a, Lemma 2] proves the existence of an extraction algo-
rithm ExtA(D) - with oracle access to A and that samples challenges from Ch following the
distribution D - which runs in expected polynomial time and succeeds with probability at
least δVfk (A,D)/k. The extraction algorithm is described in Figure 4.1.

Lemma 4.2.15. Let k ∈ N∗, Ch be a finite set with cardinality N ≥ k, Vf : Ch×{0, 1}∗ →
{0, 1} an arbitrary function and D an arbitrary probability distribution over Ch. Then there
exists an algorithm ExtA(D) so that, given oracle access to any (probabilistic) algorithm
A : Ch → {0, 1}∗, ExtA(D) requires an expected number of at most 2k − 1 queries to A
and, with probability at least δVfk (A,D)/k, it outputs k pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈
Ch× {0, 1}∗ with Vf(ci, yi) = 1 for all i and ci ̸= cj for all i ̸= j.
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Proof. The proof is similar to the proof of [AF22a, Lemma 2]. In the original proof,
the extractor samples the challenges uniformly from a subset S ⊆ Ch. Here, we need to
consider the natural restriction of D to S as per Def. 4.2.14. Since we are assuming that
D has support equal to Ch, the restriction is well-defined. Then Lemma 4.2.13 is enough
to adapt the proof of [AF22a, Lemma 2] and obtain the claim.

Knowledge Soundness of Fixed-Weight Repetitions

We now consider the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a k-out-of-N special-sound
Sigma protocol (P,V). With reference to Definition 4.1.3 and 4.1.1, we assume that the
challenge space for (P,V) is Ch = {0, . . . , N − 1} and the unfavourable challenge is c̃ = 0,
and we write wt(c) in place of wt0(c).

The uniform distribution on Cht,w = Cht,w0 induces t probability distributions Di on
Ch, obtained by taking the i-th component of a challenge uniformly sampled from Cht,w.

Definition 4.2.16. For every i ∈ {1, . . . , t}, we define the probability distribution Di over
Ch as the probability distribution having the following density function:

Pr[Xi = a] =
|{c ∈ Cht,w | (c)i = a}|

|Cht,w|
, for all a ∈ Ch.

An adversary against (Pt,w,Vt,w) is described by a (possibly-probabilistic) algorithm
A : Cht,w → {0, 1}∗. The success probability of A is defined as

εV (A) = Pr[Vf(C,A(C)) = 1],

for some verification algorithm Vf : Cht,w ×{0, 1}∗ → {0, 1}, where C is a random variable
uniformly distributed over Cht,w.

From A, we can construct t algorithms A1, . . . ,At, considering only a single invocation
of (P,V). In particular, each Ai takes as input a challenge ci ∈ Ch and runs y ← A(c =
(ci, c̄)), where c̄ is sampled uniformly at random from Cht−1,w−1 if ci = 0 or from Cht−1,w

otherwise, and A appropriately reorder its input so that ci is the i-th component of c (i.e.
(c)i = ci). Finally, Ai returns y along with c̄.

Notice that, when the input challenge ci for Ai is sampled according to the probability
distribution Di over Ch (see Def. 4.2.16), then the inputs passed to A are uniformly dis-
tributed over Cht,w. In this case, for each Ai, we can run the extractor ExtAi(Di) of Fig. 4.1.
From Lemma 4.2.15, the extraction succeeds with probability at least δVfk (Ai,Di)/k, where

δVfk (Ai,Di) = min
Si⊂Ch:|Si|=k−1

Pr[Vf(Di,A(Di)) = 1 |Di ̸∈ Si ],

Di is distributed as Di and Vf appropriately reorder its input2.
In the following lemma we show that, when executed in parallel, at least one of the

extractors ExtAi(Di) succeeds with high probability in producing k challenge-response pairs
that verify Vf and such that the i-th components of the challenges are all distinct.

Lemma 4.2.17. Let k, t ∈ N∗, 1 ≤ w ≤ t and Ch a finite set with cardinality N ≥ k. Let
Vf : Cht,w × {0, 1}∗ → {0, 1} and let A be a (probabilistic) algorithm that takes as input
c ∈ Cht,w and returns a string y ∈ {0, 1}∗. Then

2The verification function for Ai is the same Vf considered for A, but seen as a function of the form
Ch× (Cht−1 × {0, 1}∗).
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t∑
i=1

δVfk (Ai,Di) ≥
εV (A)− κt,w

1− κ̄
,

where

• κ̄ = min
{

w
t + (k − 2) t−w

t(N−1) , (k − 1) t−w
t(N−1)

}
;

• κt,w =
(
t
w

)−1 ηt,w
(N−1)t−w , with

ηt,w =

{(
w(k−1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)(

t
w

)
(k − 2)t−w otherwise

.

Proof. Let (C)i be the i-th component of the random variable C uniformly distributed
over Cht,w and let Λ denote the event Vf(C,A(C)) = 1. Therefore Pr[Λ] = εVf(A). For
i ∈ {1, . . . , t}, let Si ⊂ Ch be such that it minimizes δVfk (Ai,Di). Then,

t∑
i=1

δVfk (Ai,Di) =
t∑

i=1

Pr[Vf(Di,Ai(Di)) = 1 |Di ̸∈ Si ] =
t∑

i=1

Pr[Λ | (C)i ̸∈ Si ]

as, for any i ∈ {1, . . . , t}, Di and (C)i are identically distributed and it holds that

Pr[Vf(Di,Ai(Di)) = 1 |Di ̸∈ Si ] = Pr[Vf((C)i,Ai((C)i)) = 1 | (C)i ̸∈ Si ]

= Pr[Λ | (C)i ̸∈ Si ].

From elementary probability, it follows that

t∑
i=1

Pr[Λ | (C)i ̸∈ Si ] =

t∑
i=1

Pr[Λ ∧ (C)i ̸∈ Si]

Pr[(C)i ̸∈ Si]

=
t∑

i=1

Pr[Λ ∧ (C)i ̸∈ Si]

1− Pr[(C)i ∈ Si]

≥
Pr[Λ ∧

⋃
i(C)i ̸∈ Si]

1− κ̄

≥
Pr[Λ]− Pr[

⋂
i(C)i ∈ Si]

1− κ̄
,

where in the first inequality we can take 1/(1 − κ̄) out of the sum by observing that, for
any i ∈ {1, . . . , t},

Pr[(C)i ∈ Si] =

{
w
t + (k − 2) t−w

t(N−1) if 0 ∈ Si

(k − 1) t−w
t(N−1) otherwise

.

Since κ̄ is defined as the minimum of the previous expression, it holds that Pr[(C)i ∈ Si] ≥
κ̄.

Moreover, let us define

κt,w = max
S1,...,St

Pr[(C)1 ∈ S1 ∧ (C)2 ∈ S2 ∧ . . . ∧ (C)t ∈ St],
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where the maximum is over all sets Si ⊂ Ch with |Si| = k − 1. Notice that, equivalently,
κt,w = maxS Pr[C ∈ S], where S ⊂ Cht,w such that |(S)i| < k for all i ∈ {1, . . . , t}. The
maximal size ηt,w of S is computed in Prop. 4.2.1 as

ηt,w =

{(
w(k−1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)(

t
w

)
(k − 2)t−w otherwise

.

Therefore

κt,w = Pr[C ∈ S] ≤ ηt,w

|Cht,w|
=

(
t

w

)−1 ηt,w
(N − 1)t−w

,

which completes the proof.

In light of Lemma 4.2.17, we can bound the probability that at least one extractor
ExtAi(Di) is successful as follows:

max
1≤i≤t

δVfk (Ai,Di) ≥
1

t

t∑
i=1

δVfk (Ai,Di) ≥
εVf(A)− κt,w

t(1− κ̄)
.

As a consequence, the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a k-special-sound Sigma
protocol (P,V) is knowledge sound with knowledge error κt,w, which corresponds to the
maximum cheating probability of a dishonest prover.

Theorem 4.2.18 (Fixed-Weight Repetition of a k-Special-Sound Sigma Protocol). Let
(P,V) be a k-out-of-N special-sound Sigma protocol. Let (Pt,w,Vt,w) be the (t,w)-fixed-
weight repetition of (P,V), where k, t ∈ N∗ and 1 ≤ w ≤ t. Then (Pt,w,Vt,w) is knowledge
sound with knowledge error κt,w, where

κt,w =

(
t

w

)−1 ηt,w
(N − 1)t−w

,

with

ηt,w =

{(
w(k−1)

w

)
(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)(

t
w

)
(k − 2)t−w otherwise

.

Remark 4.2.19. Recently, [AFR23] considered a further generalisation, named Γ-special
soundness, of the notion of k-special soundness. Within such generalisation, the subsets
of challenges from which it is possible to extract a witness are determined by an arbitrary
access structure Γ, i.e. a monotone set of subsets of the challenge space. The authors proved
that, for any Γ-special-sound Sigma protocol, it is possible to build an extractor that has
knowledge error κΓ and an expected running time that scales with tΓ, where κΓ, tΓ are
positive integers determined by Γ. Then, if tΓ is polynomial, Γ-special soundness implies
knowledge soundness. Moreover, they showed that both a k-special-sound Sigma protocol
and its t-fold parallel repetition are Γ-special sound for a suitable access structure Γ, which
led them to re-discover the results of [AF22a].
The (t,w)-fixed-weight repetition of a k-special-sound 3-round interactive proof can also
be described within this framework, and the results of Theorem 4.2.18 can be obtained by
techniques similar to that of [AFR23]. Unfortunately, it is not possible to find an access
structure that suitably describes the (t,w)-fixed-weight repetition of a (k1, . . . , kµ)-special-
sound (2µ + 1)-round interactive proof. Therefore, with the goal of paving the way for
the analysis of this second case, we have made the description of the extractor for Sigma
protocols explicit, building on the techniques of [AF22a] rather than those of [AFR23].
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4.2.3 Fixed-Weight Repetition of a (k1, . . . , kµ)-Special Sound
Interactive Proof

In the following, we extend the result of Subsection 4.2.2 to multi-round interactive proofs.
Let (P,V) be a (k1, . . . , kµ)-special-sound (2µ + 1)-round interactive proof with challenge
space Ch[1]×· · ·×Ch[µ]. We define K =

∏µ
i=1 ki and write c = (c[1], . . . , c[µ]) for an element

c ∈ Ch[1] × · · · × Ch[µ].
Similarly to the case of 3-round interactive proofs, with the aim of reducing the knowl-

edge error while limiting the increase in the overall response size, we consider the t-fold
parallel repetition of the protocol (P,V), where exactly w repetitions use the unfavourable
challenge c̃ ∈ Ch[µ] in the last round. (Pt,w,Vt,w) is the resulting protocol. To show
that this interactive proof is knowledge sound, we again start by slightly generalising the
notation and results in [AF22a].

A dishonest prover against (P,V) can be described as an arbitrary (probabilistic) al-
gorithm A : Ch[1] × · · · × Ch[µ] → {0, 1}∗. Let Vf : Ch[1] × · · · × Ch[µ] × {0, 1}∗ → {0, 1} be
a verification function and D = (D [1], . . . ,D [µ]) a collection of probability distributions,
where D [i] is over D[i] ⊆ Ch[i] with |D[i]| ≥ ki. We define the D-success probability of A as

εV (A,D) = Pr[Vf(C,A(C)) = 1],

where C = (C [1], . . . , C [µ]) is a random variable, with C [i] being distributed as D [i]. If C
is uniformly distributed over Ch[1] × · · · × Ch[µ], we write εV (A). Similarly, we adapt the
punctured success probability of A as

δVfk (A,D) = min
S[1],S[2](·),...,S[µ](·)

Pr
[
Vf(C,A(C)) = 1

∣∣∣ C[1] ̸∈S[1]∧C[2] ̸∈S[2](C[1])∧···
···∧C[µ] ̸∈S[µ](C[1],...,C[µ−1])

]
,

where the minimum is over all sets S[1] ∈ Ch[1]|k1−1, and over all functions S[i] : Ch[1] ×
· · ·×Ch[i−1] → Ch[i]|ki−1, with i = 2, . . . , µ. Here, for any i ∈ {1, . . . , µ}, Ch[i]|ki−1 denotes
the set of subsets of Ch[i] with cardinality ki − 1.

Next, we define an extraction algorithm ExtA(D) with oracle access to A that samples
the challenges according to the distribution D . Building on [AF22a, Lemma 4], it is possible
to show that ExtA(D) runs in expected polynomial time and succeeds with probability at
least δVfk (A,D)/K.

Lemma 4.2.20. Let k1, . . . , kµ ∈ N∗, K =
∏µ

i=1 ki, Ch[1], . . . ,Ch[µ] be finite sets with
Ch[j] having cardinality Nj ≥ kj, Vf : Ch[1] × · · · × Ch[µ] × {0, 1}∗ → {0, 1} an arbitrary
function and D = (D [1], . . . ,D [µ]) a collection of probability distributions D [j] with support
equal to Ch[j]. Then, there exists an algorithm ExtA(D) that, given oracle access to a
(probabilistic) algorithm A : Ch[1] × · · · × Ch[µ] → {0, 1}∗, with an expected number of at
most 2µK queries to A and with probability at least δVfk (A,D)/K, it outputs K pairs
(c1, y1), . . . , (cK , yK) ∈ Ch[1]×· · ·×Ch[µ]×{0, 1}∗ with Vf(ci, yi) = 1 for all i ∈ {1, . . . ,K}
and such that the vectors ci form a (k1, . . . , kµ)-tree of transcripts.

Proof. The proof resembles that of [AF22a, Lemma 4], with the only difference that the
single-instance extractor used internally is an instantiation of the one described in Fig. 4.1.

Knowledge-Soundness of Fixed-Weight Repetitions

Let (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition – with respect to an unfavourable
challenge c̃ ∈ Ch[µ] – of a (k1, . . . , kµ)-special-sound (2µ+1)-round interactive proof (P,V)
with challenge space Ch = Ch[1] × · · ·Ch[µ].
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For ease of notation, in the following we assume that the challenge space for the i-th
round of (P,V) is Ch[i] = {0, . . . , Ni − 1} while the unfavourable challenge for the last
round is c̃ = 0.

Definition 4.2.21. For each j ∈ {1, . . . , µ− 1}, let U [j] be the uniform distribution over
Ch[j]. For every i ∈ {1, . . . , t}, let D

[µ]
i be the probability distribution having the following

density function:

Pr[Xi = a] =
|{c ∈ (Ch[µ])t,w0 | (c)i = a}|

|(Ch[µ])t,w0 |
, for all a ∈ Ch[µ].

Finally, let Di = (U [1], . . . ,U [µ−1],D
[µ]
i ).

An adversary against (Pt,w,Vt,w) is described as a (possibly-probabilistic) algorithm
which, on input a row c = ((c)1, . . . , (c)t) of columns (c)i = ((c)

[1]
i , . . . , (c)

[µ]
i ) ∈ Ch[1] ×

· · · × Ch[µ] of challenges such that wt0((c)
[µ]
1 , . . . , (c)

[µ]
t ) = w, outputs a string y ∈ {0, 1}∗.

The success probability of A is defined as

εV (A) = Pr[Vf(C,A(C)) = 1],

for some verification algorithm Vf : Cht,w0 ×{0, 1}∗ → {0, 1}, with C being a random variable
uniformly distributed over Cht,w0 .

Such an algorithm A induces t algorithms A1, . . . ,At, analogous to those considered
in the context of a single instance of (P,V). Each Ai takes as input a column (c)i ∈
Ch[1] × · · · × Ch[µ]. Then Ai runs y ← A(c = ((c)i, c̄)), where c̄ is sampled uniformly at
random from Cht−1,w−1

0 if (c)[µ]i = 0 or from Cht−1,w
0 otherwise, and A is understood to

appropriately reorder its input so that (c)i is the i-th component of c. Finally Ai returns
y along with c̄.

Notice that, when the input challenge for Ai is sampled according to the probability
distribution Di = (U [1], . . . ,U [µ−1],D

[µ]
i ) over Ch[1]×· · ·×Ch[µ], then the inputs passed to

A are uniformly distributed over Cht,w0 . Hence, for each Ai, we can consider the extractor
ExtAi(Di) of Lemma 4.2.20, which succeeds with probability at least δVfk (Ai,Di)/K, where

δVfk (Ai,Di) = min
S
[1]
i ,S

[2]
i (·),...,S[µ]

i (·)
Pr

[
Vf(Di,Ai(Di)) = 1

∣∣∣∣D[1]
i ̸∈S[1]

i ∧D[2]
i ̸∈S[2]

i (D
[1]
i )∧···

···∧D[µ]
i ̸∈S[µ]

i (D
[1]
i ,...,D

[µ−1]
i )

]
,

and Di is distributed as Di.
In the following lemma we show that, when executed in parallel, at least one of the ex-

tractors ExtAi(Di) succeeds with high probability in producing
∏µ

i=1 ki challenge-response
pairs that verify Vf and such that the challenges form a (k1, . . . , kµ)-tree of transcripts.

Lemma 4.2.22. Let k1, . . . , kµ, t, w ∈ N∗ such that 1 ≤ w ≤ t and let Ch[1], . . . ,Ch[µ] be
finite sets with Ch[j] having cardinality Nj ≥ kj. Let Vf : Cht,w0 × {0, 1}∗ → {0, 1} and let
A be a (probabilistic) algorithm that takes as input an element c of Cht,w0 and outputs a
string y ∈ {0, 1}∗. Then

t∑
i=1

δVfk (Ai,Di) ≥
εV (A)− κt,w

1− κ̄
,

where κt,w is the maximum, taken over α ∈ {0, . . . , t}, of the expression:∑min(w,α)
ℓ=max(0,w−t+α)

(
α
ℓ

)(
t−α
w−ℓ

)
Zℓ
0 (Z1 − Z0)

α−ℓ (Z2)
w−ℓ(Z1 − Z2)

t−α−w+ℓ

|Cht,w0 |
,
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with |Cht,w0 | =
(
t
w

)
(Nµ − 1)t−w(

∏µ−1
i=1 Ni)

t and

Z0 :=

µ−1∏
ℓ=1

Nℓ,

Z1 :=

µ∑
ℓ=1

 µ∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 ,

Z2 :=

µ−1∑
ℓ=1

 µ−1∏
j=ℓ+1

Nj

 (kℓ − 1)

ℓ−1∏
j=1

(Nj − kj + 1)

 .

Moreover, it holds that

κ̄ ≥ 1−

µ−1∏
j−1

Nj − kj + 1

Nj

(Nµ − kµ + 1

Nµ − 1

t− w

w
+

w

t

)
.

Proof. Let (C)i be the i-th component of the random variable C uniformly distributed over
Cht,w0 and let Λ be the event Vf(C,A(C)) = 1. Therefore Pr[Λ] = εV (A). For i ∈ {1, . . . , t},
let S[1]

i and S
[2]
i (·), . . . , S[µ]

i (·) be such that they minimize δVfk (Ai,Di). Moreover, we denote
by Γi the event

(C)
[1]
i ̸∈ S

[1]
i ∧ (C)

[2]
i ̸∈ S

[2]
i ((C)

[1]
i ) ∧ · · · ∧ (C)

[µ−1]
i ̸∈ S

[µ−1]
i ((C)

[1]
i , . . . , (C)

[µ−2]
i )

and by Ωi the event (C)
[µ]
i ̸∈ S

[µ]
i ((C)

[1]
i , . . . , (C)

[µ−1]
i ). Furthermore, we consider the

probability distribution Di which is distributed as Di = (U [1], . . . ,U [µ−1],D
[µ]
i ) over

Ch[1] × · · · × Ch[µ]. Therefore, similarly to the proof of Lemma 4.2.17, Di and (C)i are
identically distributed for any i ∈ {1, . . . , t} and, by construction of the Ai’s, it holds that

t∑
i=1

δVfk (Ai,Di) =
t∑

i=1

Pr

[
Vf(Di,Ai(Di)) = 1

∣∣∣∣D[1]
i ̸∈S[1]

i ∧D[2]
i ̸∈S[2]

i (D
[1]
i )∧···

···∧D[µ]
i ̸∈S[µ]

i (D
[1]
i ,...,D

[µ−1]
i )

]

=
t∑

i=1

Pr[Λ |Γi ∩ Ωi ].

From elementary probability, it follows that

t∑
i=1

Pr[Λ |Γi ∩ Ωi ] =
t∑

i=1

Pr[Λ ∧ (Γi ∩ Ωi)]

Pr[Γi ∩ Ωi]
=

t∑
i=1

Pr[Λ ∧ (Γi ∩ Ωi)]

Pr[Γ1 ∩ Ω1]

≥
Pr[Λ ∧

⋃
i(Γi ∩ Ωi)]

1− κ̄
≥

Pr[Λ]− Pr
[⋂

i (Γi ∩ Ωi)
]

1− κ̄
,

where in the first inequality we can take 1/(1 − κ̄) out of the sum by defining κ̄ = 1 −
Pr[Γ1 ∩ Ω1] and observing that Pr[Γ1 ∩ Ω1] = · · · = Pr[Γt ∩ Ωt]. To obtain the expression
of κ̄, first write Pr[Γ1 ∩ Ω1] = Pr[Γ1] · Pr[Ω1 |Γ1 ] and notice that

Pr[Γ1] =

µ−1∏
j=1

Nj − kj + 1

Nj
.
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Moreover, observe that Pr[Ω1 |Γ1 ] = Pr
[
(C)

[µ]
1 ̸∈ S

[µ]
1

]
for some set S

[µ]
1 ⊂ Ch[µ] with

|S[µ]
1 | = kµ − 1. Now, let S̄

[µ]
1 = Ch[µ] \ S[µ]

1 , then

Pr
[
(C)

[µ]
1 ̸∈ S

[µ]
1

]
= Pr

[
(C)

[µ]
1 ∈ S̄

[µ]
1

]
=

η̄

|(Ch[µ])t,w0 |
,

where the value of η̄ is given by the size of a maximal S̄ ⊆ (Ch[µ])t,w0 such that |(S̄)1| ≤
Nµ − kµ + 1. Following the same techniques of Prop. 4.2.1, we can explicitly compute η̄

depending on whether 0 ∈ S̄
[µ]
1 . It holds that

η̄ = max

{ (
t−1
w

)
(Nµ − kµ + 1)(Nµ − 1)t−w−1 If 0 ̸∈ S̄

[µ]
1(

t−1
w

)
(Nµ − kµ)(Nµ − 1)t−w−1 +

(
t−1
w−1

)
(Nµ − 1)t−w If 0 ∈ S̄

[µ]
1

}

≤
(
t− 1

w

)
(Nµ − kµ + 1)(Nµ − 1)t−w−1 +

(
t− 1

w − 1

)
(Nµ − 1)t−w

=

(
t

w

)
(Nµ − 1)t−w

(
Nµ − kµ + 1

Nµ − 1

t− w

w
+

w

t

)
.

Since |(Ch[µ])t,w0 | =
(
t
w

)
(Nµ − 1)t−w, we obtain

Pr[Γ1 ∩ Ω1] ≤

µ−1∏
j=1

Nj − kj + 1

Nj

(Nµ − kµ + 1

Nµ − 1

t− w

w
+

w

t

)
.

Now, let κt,w = Pr
[⋂t

i=1 (Γi ∩ Ωi)
]
. For any i ∈ {1, . . . , t}, the set S

[1]
i and the maps

S
[2]
i (·), . . . , S[µ]

i (·) identify a subset (Ā)i of Ch[1] × · · · × Ch[µ] defined in the following way.
The set S

[1]
i dictates that (Ā)i contains(c[1], c[2], . . . , c[µ]) : c[1] ∈ S

[1]
i ∧ (c[2], . . . , c[µ]) ∈

µ∏
j=2

Ch[j]

 .

Furthermore, the set S
[1]
i and the map S

[2]
i (·) dictate that (Ā)i also contains(c[1], c[2], . . . , c[µ]) : c[1] ̸∈ S

[1]
i ∧ c[2] ∈ S

[2]
i (c[1]) ∧ (c[3], . . . , c[µ]) ∈

µ∏
j=3

Ch[j]

 .

By iterating this argument, we deduce that the sets (Ā)i have a form identical to the
sets in the proof of Lemma 4.2.8 which have the same names, the only difference being that
within that proof the sets (Ā)i were determined by a starting acceptable set A, while here
they are determined by S

[1]
i and S

[2]
i (·), . . . , S[µ]

i (·). As a consequence, κt,w corresponds
to the probability of belonging to the set Ā, which is defined as the set containing every
element ((y)1, . . . , (y)t) ∈

∏t
i=1(Ā)i which respects the first condition of Definition 4.2.4,

i.e. ((y)
[µ]
1 , . . . , (y)

[µ]
t ) ∈ (Ch[µ])t,w0 . In other words, Ā is a saturated acceptable set, as

defined in Definition 4.2.7, and then we can apply Proposition 4.2.12 to conclude that the
probability κt,w is exactly the one in the claim.
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As for the fixed-weight repetition of a Sigma protocol, following Lemma 4.2.22 we can
bound the probability that at least one extractor ExtAi(Di) is successful:

max
1≤i≤t

δVfk (Ai,Di) ≥
1

t

t∑
i=1

δVfk (Ai,Di) ≥
εVf(A)− κt,w
t · (1− κ̄)

.

It follows that the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a (k1, . . . , kµ)-special-sound
(2µ+1)-round interactive proof (P,V) is knowledge sound with knowledge error κt,w, which
again corresponds to the maximum cheating probability of a dishonest prover

Theorem 4.2.23 (Fixed-Weight Repetition of a (k1, . . . , kµ)-Special-Sound Multi-Round
Interactive Proof). Let (P,V) be a (k1, . . . , kµ)-special-sound (2µ + 1)-round interactive
proof and (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition of (P,V), where w, k, t ∈ N∗ and
1 ≤ w ≤ t. Then (Pt,w,Vt,w) is knowledge sound with knowledge error κt,w, where κt,w is
the maximum, taken over α ∈ {0, . . . , t}, of the expression∑min(w,α)

ℓ=max(0,w−t+α)

(
α
ℓ

)(
t−α
w−ℓ

)
Zℓ
0 (Z1 − Z0)

α−ℓ (Z2)
w−ℓ(Z1 − Z2)

t−α−w+ℓ(
t
w

)
(Nµ − 1)t−w(

∏µ−1
i=1 Ni)t

,

where Z0, Z1, Z2 are defined as in Lemma 4.2.22.

4.2.4 Applications and Conclusions
In this section, we have established a positive result about the security of fixed-weight
parallel repetitions of special-sound (multi-round) interactive proofs. We have given an
in-depth description of the optimal strategy of a dishonest prover attacking a fixed-weight
repetition of an interactive proof. In particular, we have provided an explicit expression
of the maximum adversary’s cheating probability, for both the 3-round and multi-round
cases. Next, we have generalized the knowledge extractor from [AF22a], applying it to
the (t,w)-fixed-weight repetition of a (k1, . . . , kµ)-special-sound (2µ+1)-round interactive
proof. We have obtained a strong result on the knowledge soundness of the fixed-weight
optimization, proving that the knowledge error of the protocol matches the maximum
cheating probability of a dishonest prover. To the best of our knowledge, this is the first
time the security of this standard optimization has been analyzed, beyond 2-special-sound
Sigma protocols.

Our work gives direct, tight results on the security of the interactive proofs underlying
many recent signatures. For instance, they provide an explicit knowledge error for the fixed-
weight repetition of q2-identification schemes [Che+16], such as the 5-round interactive
proof underlying CROSS [Bal+23b]. Similarly, they can be applied to k-special-sound
Sigma protocols, with k > 2, such as the recent SIDH-based signature of [GPV24].

Future Works. When dealing with multi-round interactive proofs, our results cover the
fixed-weight optimization in the case where a fixed challenge in the last round is repeated
a prescribed number of times. This is a seemingly arbitrary choice, as we might consider
fixed-weight challenges in intermediate rounds or in a generic subset of them, but it is
closely tailored to concrete applications of interactive proofs for building digital signatures.
Indeed, the fixed-weight optimization is motivated by the presence of challenges with larger
response sizes, while intermediate rounds have typically constant-size responses. However,
an extension of our results to a “generalized” fixed-weight optimization might be of interest
for future protocols with different approaches from the current ones.
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On the negative side, our result does not directly translate to the non-interactive case
and thus we cannot use the bound of Subsections 4.2.2 and 4.2.3 to determine parameters
of signature schemes. Indeed, when considering signature schemes, it is necessary to also
take into consideration the security loss caused by the Fiat-Shamir Transform. As shown in
[AFK22b], the Fiat-Shamir transform of a t-fold parallel repetition of a (k1, . . . , kµ)-special-
sound interactive proof incurs in a security loss that is exponential in the number of rounds.
While the attack of [AFK22b] does not specifically target fixed-weight repetitions, the same
heuristic could be applied to our scenario. Adapting the attack to find precise bounds for
the security loss is an interesting open problem for future research, since they are crucial
to determine provable-secure parameters of multi-round-based signatures, such as CROSS
[Bal+23b].

4.3 Straight-Line Extraction from Group Action
In this section, we focus on Sigma protocols. We have already seen that it is possible
to turn them in non-interactive proof systems using general transforms (or compilers),
of which the most noteworthy is the one proposed by Fiat and Shamir [FS87a; PS96;
Abd+02], but other ways are also possible, like the ones proposed by Pass [Pas03], Fischlin
[Fis05; KS22; CL24] and Unruh [Unr15]. Each compiler for Sigma protocols describes how
to build a NIZKP, and how it is possible to define an algorithm, called extractor, that
interacting with a prover can extract a valid witness for the statement in input to the
prover and the verifier. The transformation introduced by Fiat and Shamir [FS87a; PS96;
Abd+02] is proven secure in [PS96] describing an extractor with the capability to rewind
the prover algorithm to reconstruct a witness for the public statement. This capability is
not required by the extractors described by Pass, Fischlin, and Unruh. For this reason the
NIZKP obtained using the latter transforms meet the definition of online (or straight line)
extractable NIZKP, since they are associated to extractors who do not need to rewind the
prover to extract a witness.

Despite Fiat-Shamir [FS87a; PS96; Abd+02] being the most common and practical way
to compile interactive proofs in non-interactive proofs, the fact that the extraction of the
witness (needed to prove the proof is knowledge sound) requires rewinding [PS96] limits its
applicability in contexts where rewinding is not an option, for example while executing some
multiparty protocols that require the parties to create NIZKP of knowledge of witnesses.
For those applications, the security proof requires the use of NIZKP with online extractors
(Definition 4.3.3). Another downside of using Fiat-Shamir, which is mostly omitted when
it comes the time to instantiate the protocols, is the loss of tightness in the security proof
which does not occur when using online extractable NIZKP. We analyze the special case
constituted by the online extractable NIZKP obtained from group actions, asking ourselves
the following question:

Is it possible to improve the standard techniques to turn a Sigma protocol
from cryptographic group actions into an online-extractable NIZKP?

In the following, we propose a new online extractable transform which improves, for
some relevant set of parameters, the results obtained by using Fischlin, Pass or Unruh.

4.3.1 Sigma Protocols and Online-Extractable Transforms
We have already had the opportunity to discuss interactive protocols in their most general
sense. In this section, given a binary relation R ⊆ X×Y , we will focus on Sigma protocols
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which are complete, 2-special sound and Honest-Verifier Zero-Knowledge. With a little
abuse of notation, we will simply call these objects “Sigma protocols”, always referring to
the following definition.

Definition 4.3.1 (Sigma Protocol [Dam02]). Let R ⊆ X × Y be a binary relation. A
Sigma protocol Σ for R is a pair Σ = (P,V) where P is an algorithm taking as input
(x, y) ∈ R, and V is an algorithm taking as input a statement x ∈ X. The interaction
between P and V is structured as follows: P computes a message f , called first message,
and sends it to V. V samples a random challenge from a finite challenge space ch

$←−Ch,
and sends ch to P(x, y). Finally, P computes a response r and sends it to V who outputs
Accept or Reject as a deterministic function of x, (f, ch, r). We require that this proto-
col satisfies the completeness, 2-special soundness and the honest-verifier zero-knowledge
(HVZK) properties, as defined below:

1. Completeness: We say that Σ = (P,V) is complete if for all (x, y) ∈ R, when P and
V interact with each other following the protocol, V always outputs Accept.

2. 2-Special Soundness: We say that Σ = (P,V) is 2-special sound if there is an efficient
deterministic algorithm Ext (called a witness extractor) with the following property:
given as input a statement x ∈ X, along with two accepting conversations (f, ch, r)
and (f, ch′, r′) for x, with ch ̸= ch′, Ext always outputs y ∈ Y such that (x, y) ∈ R
(i.e., y is a witness for x).

3. Honest-Verifier Zero-Knowledge: We say that Σ = (P,V) is HVZK if there exists a
probabilistic polynomial time (PPT) algorithm Sim (called a simulator) that takes
as input (x, ch) ∈ X×Ch and outputs a pair (f, r) such that (f, ch, r) is an accepting
conversation for x with the same distribution as conversations between honest P and
V with output x.

When dealing with Sigma protocols and the Fiat-Shamir transform [Sch91; CL04;
Bia+20; Tan+22; DFG19; Ste93], in order to achieve some notion of security, the interac-
tive protocol is required to satisfy some additional properties. We provide a description of
the required properties in the following and call effective a Sigma protocol that satisfies
these requirements.

Definition 4.3.2 (Effective Sigma protocol). We say that a Sigma protocol is effective if
it also satisfies the following properties.

1. First Message Entropy: Being λ the security parameter, the min-entropy of f $←−P(x, y)
is super-logarithmic in λ.

2. Public Coin: For any λ, for any (x, y) ∈ R, and for any f
$←−P(x, y), ch $←−Ch is uniform

in {0, 1}ℓ(λ).

3. Unique Responses: For any PPT algorithm A taking as input the security parameter
λ, A produces a tuple (x, f, ch, r, r′)

$←−A(λ) satisfying V(x, f, ch, r) = V(x, f, ch, r′) =
Accept with no more than negligible probability in λ.

Parallel composition of Sigma protocols. Given an effective Sigma protocol Σ,
it is possible to define another effective Sigma protocol Σℓ, given by ℓ parallel repetitions of
Σ, as follows: P computes a first message f = (f1, . . . , fℓ) of Σℓ, where fi is a first message
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of Σ and sends it to V. V samples a random challenge ch = (ch1, . . . , chℓ) of Σℓ, given by
the concatenation of ℓ challenges chi of Σ, and sends ch to P(x, y). Finally, P computes a
response r = (r1, . . . , rℓ) given by the concatenation of the responses of Σ to the challenge
chi and the first message fi for i ∈ [ℓ], and sends it to V who outputs Accept or Reject as a
deterministic function of x, (f, ch, r). If Σ is a Sigma protocol, Σℓ is also a Sigma protocol
[Dam02, Lemma 1]. It is easy to see that if the properties required in the definition of an
effective Sigma protocol are satisfied by Σ, then the same properties are inherited by Σℓ,
therefore also Σℓ is an effective Sigma protocol.

We define the concept of non-interactive zero-knowledge proof (NIZKP) of knowledge
for relation R with online (or straight-line) extractors in the random oracle model.

Definition 4.3.3 (NIZKP of Knowledge with online extractor [Fis05]). A NIZKP of knowl-
edge for relation R with an online extractor is a pair of PPT algorithms (P,V) satisfying
the following properties:

1. Completeness: for any oracle H, any (x, y) ∈ R, for any π
$←−PH(x, y), we have

VH(y, π) = Accept with overwhelming probability.

2. Zero-Knowledge: there exist a pair of probabilistic polynomial time (PPT) algorithms
Sim = (Sim0,Sim1) (called simulator) such that, for any pair of PPT algorithms
D = (D0, D1) (called distinguisher) the following experiments are indistinguishable:

• let H be a random oracle, (x, y, δ)
$←−DH

0 (λ) and π
$←−PH(x, y) if (x, y) ∈ R,

otherwise π ← ⊥. Output DH
1 (π, δ);

• let (H0, σ)
$←−Sim0(λ), (x, y, δ)

$←−DH0
0 (λ), and (H1, π)

$←−Sim1(σ, x, 1) if (x, y) ∈
R, and (H1, π)

$←−Sim1(σ, x, 0) otherwise. Output DH1
1 (π, δ).

where δ is the state information which is passed between D0 and D1 and σ the state
information passed between Sim0 and Sim1.

3. Online Extractor : There exist a PPT algorithm Ext (called online extractor) such that
the following holds for any algorithm A. Let H be a random oracle, (x, π) $←−AH(λ),
and QH(A) be the set of queries made by A to H, and H’s answers. Denote with
y

$←−Ext(x, π,QH(A)), then the probability that VH(x, π) = 1 and (x, y) ̸∈ R is negli-
gible in λ.

Note that Sim in the second experiment of the zero-knowledge property programs the
random oracle giving access to the random oracle H0 to D who can send queries to H0

before it generates the statement-witness pair (x, y) ∈ R and sends it to Sim. Then, Sim
can program the random oracle according to the statement x while keeping it consistent
with H0 because D1, who has received the state information δ from D0, will be allowed to
perform random oracle queries to H1 before producing its output.

In some NIZKP (see for example [CL24]) the probabilistic algorithm P taking in input
a statement-witness pair in R does not produce a valid proof π with probability 1, in this
case P can be modified so that if the proof is not valid (i.e. π = ⊥), P starts over using
a different randomness until it produces a valid proof π ̸= ⊥. of course this modification
allows to reduce the failure probability to a negligible value but, on the other hand, the
proof generation time grows with the number of times the prover has to start from the
beginning. To study these cases, it is useful to define the concept of completeness error.

103



CHAPTER 4. THEORETICAL FOUNDATIONS AND POKS

Definition 4.3.4 (Completeness Error). We define the completeness error ϵPc of a NIZKP
of knowledge (P,V) for the relation R as the probability that a prover, taking as input a
statement-witness pair (x, y) ∈ R, generates an invalid proof π = ⊥ for x

ϵPc = Pr
[
⊥ $←−P(x, y)|(x, y) ∈ R

]
.

We also define the concept of soundness error associated to an online extractor as the
probability that the algorithm A, who is given in input a statement-witness pair (x, y) ∈ R,
can output a valid proof π for x, but the extractor Ext, who is given access to π,QH(A)
can not extract a witness for the statement x.

Definition 4.3.5 (Soundness Error w.r.t. an Online Extractor). We define the soundness
error ϵP,Exts of a NIZKP (P,V) associated to an online extractor Ext as the probability that
an algorithm A can generate a valid proof π for a statement x of its choice performing the
set of random oracle queries QH(A) without having Ext(x, π,QH(A)) being able to extract
a witness for x.

ϵP,Exts = Pr
[
(x,Ext(x, π,QH(A))) ̸∈ R | (x, π,QH(A))

$←−AH(λ) ∧ VH(x, π) = 1
]

To prove the soundness of a NIZKP it is crucial to design a PPT algorithm Ext which
is able to extract the witness with overwhelming probability, because this implies that the
algorithm A who has generated the proof actually knows the witness for x (or given the
queries it has made, it would be able to reconstruct a witness for x). In general we want
that the soundness error for a NIZKP is below 2−λ. Below we describe some noteworthy
techniques used to generate online-extractable NIZKP from Sigma protocols.

Fischlin Transform

We recap the transform proposed by Fischlin in [Fis05] and recently revisited by Chen and
Lindell in [CL24] where the authors simplify the description of the transform reducing the
number of parameters used to define it, also simplifying the relations among the parameters
that must be satisfied in order to obtain secure NIZKPs. The Fischlin transform, in its
simplified version described in [CL24], instructs the prover taking in input a witness-
statement pair (x, y) ∈ R and perform the following steps:

• generate ρ first messages (f1, . . . , fρ) and set f := (f1, . . . , fρ)

• ∀i ∈ [ρ] search for chi ∈ Ch such that:

– (fi, chi, ri) is an accepting transcript;

– Hb(x, f, i, chi, ri) = 0b.

• output as a proof for x: π ← (f, {chi}i∈ρ, {ri}i∈ρ).

To verify a proof π for x, the verifier checks that ∀i ∈ [ρ] the transcripts (fi, chi, ri) are
valid for x, and that Hb(f, chi, ri) = 0b.

Note that the challenge space Ch must be sufficiently large to allow the prover to
eventually find a challenge for each first message. If |Ch| is too small, it can be easily
enlarged by executing in parallel several instances of the Sigma protocol until the challenge
space becomes sufficiently large [Dam02, Lemma 2]. Being (PFi,VFi) the NIZKP obtained
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by applying the Fischlin transform to an effective Sigma protocol Σ = (P,V). In [CL24] the
authors describe that, in order to guarantee a completeness error ϵPFi

c ≤ 2−40, the number
of challenges that the prover might need to try is

|Ch| = 2b+5 if ρ < 64 and |Ch| = 2b+6 otherwise. (4.12)

Similarly, in order to guarantee a soundness error ϵPFi,ExtFi
s = 2λ we need

bρ = λ; (4.13)

where ExtFi is the online extractor used to prove the knowledge soundness of the NIZKP
obtained using the Fischlin compiler [Fis05; CL24].

Pass Transform

Given a Sigma protocol Σ which is 2-special sound and honest-verifier zero-knowledge, the
transform proposed by Pass in [Pas03] first consists in deriving another Sigma protocol Σ′

described as follows:

• the prover generates:

1. a first message f according to Σ;

2. 2 distinct challenges ch0, ch1 ∈ C, the challenge space of Σ;

3. r0, r1, the responses corresponding to the challenges ch0, ch1 w.r.t. f and com-
putes two commitments C0, C1 to respectively r1 and r2;

and sends (f, ch0, ch1, C0, C1) to the verifier;

• the verifier generates a random bit b ∈ {0, 1};

• the prover sends the opening rb of the commitment Cb to the verifier;

• the verifier checks that

1. the transcript (f, chb, rb) is a valid transcript of Σ;

2. Cb actually opens to rb.

Now it is possible to derive a non-interactive proof by applying the Fiat-Shamir trans-
form to λ parallel executions of Σ′ obtaining the following non-interactive proof:

• the prover performs the following operations:

1. generates λ first messages of Σ′ and f ′ ← (f ′
1, . . . , f

′
λ);

2. for every i ∈ {1, . . . , λ}, generate two challenges ch(i,0), ch(i,1), where ch(i,0) ̸=
ch(i,1). Define b′ := ((ch(i,0), ch(i,1)))i∈{1,...,λ};

3. for every i ∈ {1, . . . , λ}, compute the responses r(i,0), r(i,1) corresponding to the
challenges ch(i,0), ch(i,1) w.r.t. fi, and computes two commitments C(i,0), C(i,1)

to r1 and r2, respectively. Define c′ := (C(i,0), C(i,1))i∈{1,λ};

4. generates the challenge ch = H(f ′,b′, c′,m) ∈ {0, 1}λ, where m is the message
to sign;

5. computes the responses r′ ← (r′1, . . . , r
′
λ) of Σ′ where for each i ∈ [λ] the chal-

lenge corresponding to f ′
i is chi.
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the resulting proof of m is σ ← (f ′,b′, c′, r′).

• the verifier computes ch = H(f ′,b′, c′,m), checks that the transcripts associated to
(f ′, ch, r′) are λ valid transcripts, and checks that c′(i,chi) opens to r′i.

For what concerns the completeness of the proof, note that a honest prover can always
produce a valid proof because it generates valid commitments to the responses of the
Sigma protocol Σ. For what concerns the soundness of the digital proof scheme, the way
the extractor can learn the witness is from the special soundness of the underlying Sigma
protocol and the random oracle queries providing information about two valid transcripts
for the same first message and two distinct challenges. A prover must always be able to
open the commitment Ci,chi (which is part of f ′

i) associated to the challenge chi. To do so,
it must have sent a random oracle query for (ri,chi , si,chi) where ri,chi is the right response
associated to the first message fi and challenge chi.

This means that the only way a prover can create a valid proof without giving to the
random oracle two transcripts for the same first message fi and distinct challenges is that
the prover guesses in advance the λ bit challenge ch and only computes the commitments
associated to the responses it has guessed.

Unruh Transform

The transform proposed by Pass [Pas03] has been generalized by Unruh [Unr15] to be
secure against polynomial-time quantum adversaries. More specifically, when proving se-
curity in both Pass and Fischlin transforms, we design an extractor which can extract a
valid witness by (1) rewinding the adversary and (2) accessing the input queries to the
random oracle. In the quantum random oracle setting this is a problem because rewinding
is difficult, as the input queries can not be measured without compromising the state, and
a key step in these security proofs is the ability to reprogram the random oracle to an
input that has already been asked for by the adversary. In the classical ROM this is not a
problem, but in the QROM the concept of “input that has already been requested by the
opponent” is not well defined. This is because the input queries could be in superposition,
and we could not measure the input without altering the state of the qbits. The crucial
issue is therefore to build an oracle for which we can observe the input queries made by
the adversary, having access only to the outputs that the adversary sends us. Unruh’s
proposed idea is to use a random oracle G that is also a permutation. Clearly, for each
oracle input x that we want to know, we must have access to G(x), and therefore we will
have to include G(x) in the output of the protocol.

Informally, given a Sigma protocol Σ which is 2-special sound and honest-verifier zero-
knowledge, the transform proposed by Unruh in [Unr15] works as follows. The prover
is instructed to generate m = 2ℓ different proofs for Σ with the same first message. The
prover computes the responses and commits to the transcripts building a Merkle tree. This
basic unit is repeated r = λ

ℓ times to amplify the soundness to a security level λ. Upon
giving input to a hash function the r Merkle roots, the prover receives a challenge that
specifies for each of the r basic units a transcript that must be revealed. So, the prover
opens the transcripts corresponding to the specified challenge for each first message, and
the verifier checks that the opening of the commitments are correct and that the transcripts
are valid. Intuitively, a prover who is able to open the commitment showing the transcript
must have committed to two transcripts for the same first message and different challenge
with probability

(
2−ℓ
)r, from which the parameters condition ℓ · r ≥ λ.
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• the prover performs the following operations:

1. generates t ·m proofs (fi, chi,j , ri,j) for Σ;
2. for every i ∈ {1, . . . , t}, for every j ∈ {1, . . . ,m}, uses the permutation function

and compute the commitments hi,j ← G(ri,j).
3. generates the challenge J1|| . . . ||Jt = H(x, (fi)i, (chi,j)i,j , (hi,j)i,j);

the resulting proof of m is (x, (fi)i, (chi,j)i,j , (hi,j)i,j , (ri,Ji)i).

• the verifier computes J1|| . . . ||Jt = H(x, (fi)i, (chi,j)i,j , (hi,j)i,j , ), checks that, ∀i,
chi,1, . . . , chi,m are pairwise distinct, the transcripts associated to (x, (fi)i, (chi,j)i,Ji , ri)
are t valid transcripts, and checks that hi,J−i = G(ri).

A malicious prover who succeeds in this will have to include valid responses in at least
a large fraction of the G(ri,j). Thus by inverting G, we can find two valid triples (f, ch, r)
and (f, ch0, r0) if the malicious prover’s proof passes verification. In [KS22, Section 1.1] the
authors observe that only the opening of the commitments incurs in a log(2ℓ) · r · λ = λ2

bits (i.e. approximately 2 KBytes for λ = 128) of overhead in the size of the proof π.

4.3.2 Cryptographic Group Actions
Definition 4.3.6 (Group Action). A group (G, ·, e) is said to act on a set X if there exists
a map

⋆ :G×X X

(g, x) g ⋆ x

such that e ⋆ x = x for every x ∈ X and g ⋆ (h ⋆ x) = (g · h) ⋆ x for every x ∈ X and all
g, h ∈ G. In this case, we say that the triple (G,X, ⋆) is a group action.

In order to build cryptographic schemes using group actions, we need instances of group
actions (G,X, ⋆) for which it is possible to efficiently perform some operations such as (1)
compute the group operation and the inverses in the group, (2) perform random sampling
in X and G, (3) decide the equality and validity of a representation of the elements in X
and (4) compute the action ⋆ of a group element over a set element. This kind of group
actions are called effective group actions [Ala+20].

For a group action to be useful in cryptography, it must not only be effective but also be
based on one-way functions, or equivalently hard problems, for which the prover is the only
one who knows the associated solution. An effective group action that satisfies this further
requirement is called cryptographic group action. A (typically hard) family of problems for
effective group actions is the Group Action Inversion Problem (GAIP) defined below.

Definition 4.3.7 (GAIP). The GAIP on a group action (G,X, ⋆) is defined as follows.
Given as input a pair (x0, x1) of elements in X, output a group element g ∈ G such that
x1 = g ⋆ x0.

Another well-known problem is the Stabilizer Computation Problem (SCP) defined
below.

Definition 4.3.8 (SCP). The SCP over a group action (G,X, ⋆) is defined as follows. On
input x0 ∈ X, find an element g ∈ G, g ̸= e such that g ⋆ x0 = x0.

Examples of effective group actions for which these assumptions are believed to hold are
based on isogenies [Cas+18], tensors [Ji+19; Tan+22] and linear codes [Cho+23a; Bia+20].
The Sigma protocol Σ⋆ = (P,V) for the relation R ⊆ {((x0, x1), g) ∈ G×X2 | x1 = g⋆x0)}
is defined in Protocol 4.2.
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P ((x0, x1), g) V ((x0, x1))

g̃ ←$ G

f ← g̃ ⋆ x0
f−−−−−−−−−−−−−−−→
ch←−−−−−−−−−−−−−−− ch

$←−{0, 1}
z ← g̃g−ch z−−−−−−−−−−−−−−−→

check z ⋆ xch = f

Figure 4.2: Sigma Protocol Based on Group Action Σ⋆.

It can be easily proved that the Sigma protocol satisfies the completeness, 2-special
soundness and (special) honest verifier zero knowledge properties defined in Definition 4.3.1.
The simulator Sim, used to prove the HVZK property, takes in input a statement (x0, x1)
and a challenge ch ∈ {0, 1} samples uniformly at random a group element z ∈ G, computes
the first message f = z ⋆ xch and returns the transcript (f, ch, z). The protocol is 2-special
sound since, given two transcripts (f, 0, z0) and (f, 1, z1), the extractor can exhibits z−1

1 z0
as a witness for (x0, x1). A single interaction of this basic protocol is represented in
Figure 4.3.

x y

f

g

g̃ g̃g−1

Figure 4.3: Group action graph.

Remark 4.3.9. When we instantiate the Sigma protocol described in Protocol 4.2 using
a group action for which SCP is hard, then the Sigma protocol has quasi unique responses,
because given a first message f , and a challenge ch, the prover who knows the witness
g can compute a single valid response. In this case, since the Sigma protocol has unique
responses (as per Definition 4.3.2), it is public coin, and if instantiated using a group action
(G,X, ⋆) with sufficiently large group G and set X, then also the min-entropy of the first
message of the Sigma protocol is super-logarithmic in λ, then Σ⋆ is an effective Sigma
protocol according to Definition 4.3.2.

The Sigma protocol Σ⋆ described in protocol 4.2 has a binary challenge space Ch =
{0, 1}. The challenge space can be increased by considering the parallel composition of ℓ
instances of Σ⋆ that defines a Sigma protocol Σℓ

⋆ that has, as its challenge space, Ch =
{0, 1}ℓ, whose size is 2ℓ.

Design Principles. When designing NIZKP starting from the Sigma protocol from
cryptographic group actions, one should take into consideration at least the following
two principles, which we state informally. The first regards the computational costs of
computing the group action operation.
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Principle 1. Computing the action of a group element on a set element is computationally
expensive. We want to keep this number low to reduce the creation or verification time of
NIZKP.

The second principle is a consequence of the use of the following standard technique,
at least when describing schemes based on cryptographic group actions. Since responses
to challenge 0 are random group elements, these values can be derived starting from λ-bits
long seeds [Bor+23]. The size of seeds in general is much smaller than the size of the group
elements; therefore, the transcripts with challenge 0 are much lighter than the transcripts
with challenge 1.

Principle 2. In the NIZKP generation process, we want to keep the weight of the chal-
lenges low to reduce the size of the proof.

Remark 4.3.10. Since we focus on the application of straight line transforms to Σ⋆, it is
reasonable to identify a target weight that we want the challenges in our proof to match.
For example, if we consider the group action used in LESS [Bia+20], the group elements
have a size of 237 bytes for the security parameter λ = 128. This means that a proof
associated with a challenge of weight in the range of 16 and 43 results in a weight greater
of 3.7 KBytes and 10.1 KBytes, respectively.

4.3.3 A Group Action Oriented Transform
We propose a transform for the creation of NIZKP which satisfies the online-extractability
property and is fixed-weight by design, meaning that the weight of the challenge is a
parameter of the transform and is not probabilistic, as it happens for Fischlin, Unruh
and Pass transforms. In more detail, in the following we first propose a transform that
has completeness error 0. In the next subsection, we will exploit this initial structure to
outline a new transform, balancing between the completeness error and the size of the proof.
We will see that, for some relevant security parameters, this transformation improves the
performances obtained by applying the other ones, yielding lighter challenges for the same
query complexity and the same number of group action computations.

General Construction

The bigger picture of our construction is as follows. Suppose we are given a 2-special sound
Sigma protocol and a true statement (x, y) ∈ R. Given L first messages f1, . . . , fL for the
basic Sigma protocol, denote with f = (f1, . . . , fL) and let the prover search through chal-
lenges chi and responses zi to find ρ tuples (x, f, chi = 1, zi) whose b least significant bits
of the hash collide, for a small b. For the sake of simplicity, in the following we will assume
that H only has b output bits. The prover outputs the vector (fi, chi, zi)i∈L. No further
hash values need to be included, and the verifier checks that all executions are valid and,
for the ρ executions for which chi = 1, their hash collide. The parameters will be set up
in such a way that the honest prover is able to find a valid proof efficiently. Informally, a
honest prover is able to carry out a proof without querying the random oracle twice on the
same first message only if it guesses in advance the a ρ-collision for a given hash function.
Otherwise, the knowledge extractor can find them in the list of hash queries and compute
the witness. The details are as follows.

We make use of effective Sigma protocols with logarithmic challenge length ℓ. Given
d ∈ {0, 1}b, let T (d) be the set of d-target components associated to the digest d. The sets
T (d) are initialized to the empty set. The transform can be described as follows:
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Construction 1. Let Σ = (P,V) be an effective Sigma protocol for a relation R. We
define a non-interactive proof system (P▲,V▲) for relation R in the random oracle model
which is defined by the following parameters. Let L be the number of “parallel repetitions”
conducted, τ the weight of the challenge included in the proof, and b the output size in
bits of the random oracle. Then the algorithms (P▲,V▲) are defined as follows.

• Prover.

1. The Prover P▲
H(x, y) runs the prover P▲(x, y) in L independent repetitions to

obtain L first messages f1, . . . , fL and sets f = (f1, . . . , fL);

2. for each i ∈ [L], P computes the response zi associated to the first message fi
and the challenge 1;

3. Given i ∈ [L] and d := H(x, f, i, 1, zi) ∈ {0, . . . , 2b − 1}, add i to T (d);
4. Being D = {d : |T (d)| ≥ τ}

– if D = ∅, then P outputs ⊥.
– Otherwise, sample d̄ from D and sample a subset T ′(d̄) of T (d̄) with
|T ′(d̄)| = τ . P generates ch ∈ {0, 1}L setting, ∀i ̸∈ T ′(d̄) chi = 0}, and
chi = 1 otherwise. Finally, for every i ∈ [L], the prover computes the
response zi associated to fi and chi, and outputs π = (fi, chi, zi)i∈[L]

3.

• Verifier. The verifier V▲
H(x) on input π = (fi, chi, zi)i∈[L] accepts if and only if the

following three conditions hold:

1. V(x, fi, chi, zi) = 1 for every i ∈ [L];

2. chi = 1 on exactly τ indexes i1, . . . , iτ , otherwise chi = 0;

3. H(f, i1, 1, zi1) = · · · = H(f, iτ , 1, ziτ ).

We recall that the responses to challenge 0 are lighter because they can be encoded in
seeds, according to the technique we have introduced before the description of Principle 2.

Security Analysis

In the following we prove that Construction 1 is a NIZKP with online extractor as defined
in Definition 4.3.3.

Theorem 4.3.11. Let (P,V) be an effective Sigma protocol for relation R. Define (P▲,V▲)
as the non-interactive proof system obtained by applying Construction 1 to (P,V). Assum-
ing b(τ − 1) = λ and L = 2b(τ − 1) + 1, then (P▲,V▲) is a non-interactive zero-knowledge
proof of knowledge for relation R (in the random oracle model) with an online extractor,
completeness error ϵP▲

c = 0, and soundness error ϵP▲,Ext▲
s = 2−λ.

Proof. We prove that Construction 1 satisfies the completeness, zero-knowledge and knowl-
edge extraction properties.

Completeness. Recall that an honest prover is able to produce a valid proof when he
finds τ indices i1, . . . , iτ such that H(f, i1, 1, zi1) = · · · = H(f, iτ , 1, ziτ ). We observe
that it is possible to obtain completeness 1 simply by setting L = 2b(τ − 1) + 1. In
this case there always exists a digest d̄ such that |T (d̄)| ≥ τ by a straightforward
variant of the pigeonhole principle. This means that for such a value of L the ϵPc = 0.

3Or just π = (chi, zi)i∈[L] if the Sigma protocol is first message retrievable.
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Zero-Knowledge. A possible zero-knowledge simulator Sim▲ = (Sim▲0, Sim▲1) works as
follows. Sim▲0 defines H0 as an empty hash table which it programs to simulate a
random oracle. Sim▲ gives access to it to DH0

0 , then, DH0
0 can send Sim▲0 random

oracle queries for input q. Sim▲ samples uniformly at random d(q)
$←−{0, 1}b and adds

to the hash table the pair (q, d(q)). D0 in turn sends to Sim▲ a triple (x,w, δ). When
(x, y) ̸∈ R, the simulation is immediate, and Sim▲1 outputs (⊥, H1).

Otherwise, if (x, y) ∈ R, for every d ∈ {0, 1}b, Sim▲1 defines T (d) = ∅, after which
for every i ∈ [L], it randomly samples a string si ∈ {0, 1}b, and adds i to T (si). Since
L = 2b(τ − 1) + 1, D = {d ∈ {0, 1}L : |T (d)| ≥ τ} ≠ ∅. Sim▲1 samples d ∈ D, and
randomly selects a subset T ′(d) ⊆ T (d) of cardinality τ . Sim▲1 creates the challenge
vector ch setting chi = 1 ∀i ∈ T ′(d) and chi = 0 otherwise. Finally it runs the spe-
cial zero-knowledge simulator Sim of the underlying effective Sigma protocol L times
on x and each chi to obtain L tuples (fi, chi, zi) such that V (x, fi, chi, zi) = 1. Sim▲1

programs the hash table H1 as H0 to which are added the pairs ((f, i, chi, zi), si), i.e.
H1(f, i, chi, zi) = si. Finally, Sim▲1 outputs (π,H1) =

(
{(fi, chi, zi)}i∈[L], H1

)
.

Sim▲ produces a proof π which is indistinguishable from a real proof because the
output of the hash function H1 are sampled uniformly at random. From these, the
components for which chi = 1 are selected as in a real protocol execution and then,
given the values chi,∀i ∈ [L], also the simulation of the transcript is correct because
we generate it using the simulator Sim(x, chi) of the underlying Sigma protocol. The
only case in which the simulation fails is when Sim▲1 has to program the hash table H1

adding the queries used to generate the proof π, mapping each transcript (f, i, chi, zi)
to the associated digest si, but the input (f, i, chi, zi) was already queried by D0.
This happens with negligible probability because the underlying Sigma protocol is
effective so the min-entropy of the commitments is super-logarithmic, and D0 can
query H0 only about a polynomial number of inputs.

Online Extraction. According to Def. 4.3.3, the scheme described in Construction 1
admits an online extractor if there exists an algorithm Ext which, on input π =
(x, (fi, chi, zi)i∈[L]) and QH(A) outputs, except with negligible probability, a witness
w for x.

The extractor Ext we define loops through the list QH(A) and the all the transcripts
{(fi, chi, zi)i∈[L]} included in π looking for two accepting transcripts (f, ch, z), (f, ch′, z′)
with ch ̸= ch′. If the search is successful Ext calls the knowledge extractor Ext of the
underlying effective Sigma protocol on these values and outputs the same extracted
value. If the search is unsuccessful, Ext outputs ⊥.

Thus, in order to compute the failure probability of Ext, it is sufficient to bound the
probability that A does not provide Ext with two such transcripts, but still the proof
π verifies.

For the sake of simplicity we can restrict our analysis to algorithms A who only sends
“meaningful random oracle queries”, which are the queries that might be made also
by a verifier to checks the validity of a proof π for a statement x. These queries are
defined as:

• queries of the form (x, f, i, chi, zi);

• queries with chi = 1;

• with V1,FS(x, fi, chi, zi) = 1.
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Otherwise we could build an algorithm A′ which uses A as a subroutine and answers
to non-meaningful queries programming an “internal” random oracle (internal to
A′), and to meaningful queries by forwarding the queries to the “real” random oracle.
The interaction with A′ would be indistinguishable to A from the interaction with a
random oracle, therefore the probability that A outputs a valid proof π is unchanged,
and if A′ outputs the same proof π, the success probability of A and A′ is the same.

We also ask that the algorithm A always sends a meaningful random oracle query
associated to the components of the proof π whose challenge is set to 1. If A does not
do that, we could instruct the wrapper algorithm A′ to send the queries associated
to those transcripts just before sending to Ext the proof π.

This means that for each i ∈ [L] such that the proof π = {(fi, chi, zi)i∈[L]} has
chi = 0, A has never queried the random oracle for (x, f, i, 1, zi).

Therefore A has sent only τ meaningful queries for the components i ∈ [L] for prefix
(x, f) s.t. chi = 1. In order for the proof to be verified, the output of the random
oracle on such queries di1 , . . . , diτ has to be equal to d ∈ {0, . . . , 2b−1}. The random
oracle queries are distinct, therefore the outputs − which are all equal to d − have
been sampled uniformly at random from the random oracle. The probability that
these digests are equal is

P(di1 = · · · = diτ ) =
∑

c∈{0,1}b
P(di1 = · · · = diτ = c) = 2b · ( 1

2b
)τ = 2−b(τ−1).

As a consequence,

ϵA,Ext▲
s ≤ 1

2b(τ−1)

Parameters

Table 4.1 reports the performance of our transform, as b and τ vary. In particular, as b
varies in the set {2, 3, 4, 5, 6, 7, 8}, we calculate τ so that b(τ − 1) ≥ 128, and consequently
L as 2b(τ − 1) + 1. We will therefore calculate the number of group actions necessary
to produce a proof, the number of 1s actually present among the challenges, the query
complexity of the prover, i.e. the number of queries that a prover must make to a random
oracle in order to produce the proof, and the overhead, i.e. the amount of data relating
to the commitment to be sent in the proof. In the case of this transform, the overhead
is always zero, as the data relating to the commitment can be entirely obtained from the
remaining part of the proof. However, we have decided not to remove this column from
Table 4.1, so that later the comparison between this transform and the subsequent ones
that we will analyze will be facilitated.
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G
A

O
b τ L #Group Actions #1s Query Compl. Overhead (Kb)

2 65 257 257 65 257 -
3 44 345 345 44 345 -
4 33 513 513 33 513 -
5 27 833 833 27 833 -
6 23 1409 1409 23 1409 -
7 20 2433 2433 20 2433 -
8 17 4097 4097 17 4097 -

Table 4.1: As the parameters b and τ (associated to the security parameter λ = 128) vary,
the table describes the number L of parallel repetitions needed for the proof. Furthermore,
for each triplets (b, τ, L), the number of group action computations, the number of chal-
lenges equal to 1, the query complexity, and the overhead are represented.

Notice that the number of group actions coincides with the number of parallel repe-
titions L, the number of ones equals τ , and the query complexity equals the number of
group actions computed.

4.3.4 Comparison With Known Transforms
In the following, we describe the known online-extractable transformations when applied
to Σ⋆, comparing them with the transform that we have introduced in Subsection 4.3.3. As
we will see, the NIZKPs obtained by applying the transforms in the simplest way return
immense weights; a natural way to limit this problem is to try to fix the weight of the
challenges (as suggested in Fiat-Shamir), which brings with it an increase in group actions
to calculate.

Pass Transform Applied to Σ⋆

Given a Sigma protocol Σ⋆, the transform proposed by Pass in [Pas03] works as follows.

Construction 2. Let H be a random oracle and ((x0, x1), g) ∈ R be a statement-witness
pair given in input to PP, whereas VP is given as input only (x0, x1). The Pass transform
is as follows.

Prover algorithm. The prover PH
P ((x0, x1), g) executes the following instructions:

• generates λ first messages f1, . . . , fλ of Σ⋆;
• for every i ∈ {1, . . . , λ}, considers the challenges 0 and 1, computes the associ-

ated responses ri,0, ri,1 and computes the commitments to these values Ci,0 ←
H(ri,0) and Ci,1 ← H(ri,1),;

• computes the vector f ′ where f ′
i ← (fi, Ci,0, Ci,1);

• generates the challenge ch = H(f ′, (x0, x1)) ∈ {0, 1}λ;
• For each i ∈ {1, . . . , λ}, compute the response r′i corresponding to fi and chi ∈
{0, 1} setting r′i ← ri,chi . Let us define r′ ← (r′1, . . . , r

′
λ);

• the resulting proof for (x0, x1) is π ← (f ′, r′) = (f , {(Ci,0, Ci,1)}i∈[λ], {ri,chi}i∈[λ]).

Since the Sigma protocol is first-message retrievable, the proof can be lightened by
including only π ← (ch, {Ci,1−chi}i∈{1,··· ,λ}, r′) from which the verifier can reconstruct
f ′.
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Verifier algorithm. The verifier VP(x0, x1) receives π, computes ch = H(f ′, (x0, x1)),
checks that the transcripts associated with (f ′, ch, r′) are λ valid transcripts and that
the commitments are opened correctly.

We describe the behavior of the transformation in the context of our interest, describing
some optimizations and the main limitations. A direct application of the Pass transform
leads to proofs obtained by repeating the basic protocol λ times, clashing with two facts.
On the one hand, the prover is forced to include λ hash values in the proof (corresponding
to the commitments that are not opened), for a fixed overhead of 2Kb. On the other
hand, the weight of the challenge ch can be modeled as a binomial with mean µ = λ and
probability p = 0.5, for an average weight of λ/2 = 64 ones. For the dimensions of the
responses associated with the 1-challenges with which we will have to deal later, this value
is too high and, according to Principle 2, we would like to be able to lower it. A common
and natural approach to achieve this goal is by the fixed-weight optimization, which allows
the weight of the challenge to be reduced as desired, at the price of increasing the number
of parallel repetitions necessary to obtain the same initial security level. According to this,
we weighted the hash function in order to produce digests of the same weight as those used
in our transformation (see Table 4.1). This levels the weight of the challenges and allows
a fair comparison between the two transforms. Table 4.2 shows the Pass parameters for
these weight values.

PA
SS

w t #Group Actions #1s Query Compl. Overhead (Kb)

65 132 132 65 265 2
44 152 152 44 305 2.4
33 210 210 33 421 3.5
27 306 306 27 613 5.3
23 458 458 23 917 8.4
20 711 711 20 1423 13.6
17 1334 1334 17 2669 28

Table 4.2: As the fixed weight w varies, t represents the minimum number of parallel
repetitions necessary to obtain security level λ = 128. Furthermore, for every choice of
(w, t), table above also represents the number of group actions computed, the number of
ones present in the callenge vector, the query complexity of the prover and the associated
overhead necessary to produce a proof.

Note that, using the Pass transformation applied to Σ⋆, the number of group actions
computed is equal to the number of parallel repetitions t, and the number of 1s present in
the challenge vector is equal to the parameter w. The query complexity is always double
the number of parallel repetitions, and the overhead is λ bits for each repetition of the basic
protocol Σ⋆, leading to a total of λ · t bits of overhead. It is clear that following Principle 2
results in reducing the weight of the challenges, but at the same time it places a greater
distance from Principle 1, because we are forced to compute a greater number of group
actions. In addition to this, increasing t results in a considerable increase in overhead (see
Table 4.2), making the proof impractical.

Unruh Transform Applied to Σ⋆

A straight application of this transform is as follows. The prover is instructed to commit
(using the random oracle) to the transcript of 2ℓ invocation of Σℓ

⋆ with the same first
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message (made of ℓ first messages of Σ⋆) and all the 2ℓ possible different challenges. Notice
that, regardless of the choice of parameters, by construction of the non-interactive proof,
the weight of the challenges is on average always the same, and is given by (ℓ/2) · r = 64.
Similarly, the overhead is always 2Kb for every parameter choice.

It would be desirable to reduce as much as possible the weight of the challenges revealed,
so that the revealed transcripts are lighter. A natural attempt to reduce the number of
ones is to force each of the r vector-challenges to have weight 1. According to this, for each
block of ℓ̄ first messages, We could instruct the prover to build the transcripts corresponding
only to the ℓ̄ + 1 challenges of weight less or equal than 1. This means that instead of
instantiating Unruh using, for each repetition Σℓ

∗ with ℓ·r = λ, we must instantiate it using,
for each repetition Σℓ̄

∗ where r · log2(ℓ̄+1) = 128. In Table 4.3 we report some parameters
choices for this optimization attempt. In particular, parameters have been chosen trying
to match the number of group actions or the number of ones used in our transform. In
particular, as the parameter r varies, the odd (even) lines of Table 4.3 determine ℓ in order
to match the number of group action computations (the number of ones present in the
vector challenge) of our transform, as described in Table 4.1.

U
N

R
U

H

ℓ̄ r t #Group Actions E[#1s] Query Compl. Overhead (Kb)

3 64 192 192 48 384 2
5 53 265 265 44 530 2
7 43 301 301 38 588 2
11 36 396 396 33 792 2
15 32 480 480 30 960 2
23 28 644 644 27 1288 2
31 26 806 806 25 1612 2
47 23 1081 1081 23 2162 2
63 22 1386 1334 22 4826 2
84 20 1680 1680 20 3360 2
127 19 2413 2413 19 4826 2
184 17 3128 3128 17 6256 2
255 16 4080 4080 16 8160 2

Table 4.3: As ℓ̄ and r vary, t represents the minimum number of parallel repetitions
necessary to obtain security level λ = 128. For each parameter set, the table above also
represents the number of group actions computed by the prover, the number of 1s to be
included in the proof, the query complexity and the overhead due to the commitments.

Regarding Table 4.3, the number of group actions computed by the prover equals the
number t of parallel repetitions, while the number of ones is computed as ℓ̄/(ℓ̄ + 1) · r.
Similarly, the query complexity is always double the number of group actions computed,
and the overhead is rλ·log(ℓ̄+1). Notice that, as the number of ones decreases, the product
ℓ̄ · r (which represents the number of first messages, and so the group action computed by
the prover) grows rapidly, forcing the prover to try a very large number of first messages.
In addition to this, differently from our transform, there always remains the overhead due
to commitments, as well as the (less important) query complexity, which is now doubled
if compared with Table 4.1. This makes the optimization of this transform an impractical
way to meet Principle 1 and 2 satisfactorily.
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Fischlin Transform Applied to Σ⋆

A simpler way to avoid the overhead that is present in both the Pass and Unruh transforms,
and more generally to turn Σ⋆ into an online-extractable NIZKP, is proposed by the Fischlin
transform.

Construction 3 (Fischlin transform applied to Σ⋆). Let Hb be a random oracle and
(x, y) ∈ R a statement-witness pair given in input to PFi, whereas V is given in input only
x. We instantiate the Fischlin transform as follows. Let ρ be the number of repetitions of
the Fischlin transform, b the length of the digests of Hb and ℓ = b+ 5 the number of first
messages of Σ⋆ in each of the ρ repetitions.

Prover algorithm The prover PHb
Fi ((x0, x1), g) executes the following instructions:

• sample uniformly at random ℓ · ρ = (b+5) · ρ group elements {g̃i,j}i∈[ρ],j∈[ℓ] and
compute the first messages fi = (g̃i,1 ⋆ x0, . . . , g̃i,ℓ ⋆ x0),∀i ∈ [ρ];

• compute f ← (f1|| · · · ||fρ) and executes the proof of work searching for the
challenges chi ∈ {0, 1}ℓ , for each i ∈ [ρ], such that

Hb(x, f, i, chi, ri) = 0b

where ri,j = g̃i,j if chi,j = 0 and ri,j = g̃i,jg
−1 if chi,j = 1.

• output the NIZKP of knowledge π of g

π ← (f, {chi}i∈ρ, {ri}i∈ρ).

Verifier algorithm The verifier VFi(x0, x1) receives in input π = (f, {chi}i∈[ρ], {ri}i∈[ρ])
and checks that

• the transcripts (fi, chi, ri) are valid. To do so, VFi computes gi,j = ri,j , checking
that gi,j ⋆ xchi,j = fi,j for all the ℓ sub-transcripts;

• ∀i ∈ [ρ], checks that Hb(x, f, i, chi, ri) = 0b.

Fischlin transform applied to Σ⋆ in Construction 3 does not provide any guarantee
about the size of the proof, basically because there is not a fine-grained control for the
weight of the challenges (which in turn determines the number of group elements that
must be included in it). Moreover, to guarantee a negligible completeness error, we must
enlarge the size of the challenges for each repetition by 5 bits. This means that ∀i ∈ [ρ], each
first message fi is given by ℓ = b+5 first messages fi = (fi,1, . . . , fi,ℓ) of Σ⋆, the challenge
chi is a bit string (chi,1, . . . , chi,ℓ) ∈ {0, 1}ℓ, and the response ri = (ri,1, . . . , ri,ℓ) is the
response to the parallel instances of the Sigma protocol from cryptographic group actions
corresponding to the first message fi and the challenge chi. Therefore, as a consequence
of Equations (4.12) and (4.13), the minimal number of first messages of Σ⋆ that must be
computed is

ℓρ = (b+ 5)ρ = bρ+ 5ρ = 128 + 5ρ.

Notice also that, since the Sigma protocol Σ⋆ is first-message retrievable, i.e. from the
challenge chi,j and a response gi,j (derived from ri,j) it is possible to retrieve the associated
first message fi,j = gi,j ⋆ xchi,j , then the proof π can be defined by omitting the value f ,
setting

π = ({chi}i∈ρ, {ri}i∈ρ).
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In order to reduce the dimension of the proof, according to Principle 1, the smaller
is the number of ρ, the smaller is the number of group action computations; however, as
a downside, the smaller is ρ, the larger becomes the value b (by Equation (4.13)) which
makes the query complexity (i.e. the number of random oracle queries) grow exponentially.
Furthermore, we will show that the increase in the query complexity is linked to the num-
ber of challenges equal to one, and therefore, pursuing this direction contradicts Principle
2. In the following, we provide some attempts to balance between these two factors.

To reduce the weight of the challenge found while performing the Fischlin transform, an
immediate approach is to instruct the prover algorithm to try the challenges in increasing
order of weight: at first the challenge 0, then all the challenges of weight 1, then all the
challenges of weight 2, up to the challenge of weight ℓ = b+5. As a result, the prover will
find the lighter challenge satisfying the predicate Hb(x, f, i, chi, ri). Consider a proof π as
above. Given λ, b, ρ such that b · ρ = λ, and ℓ = b+5, we are interested in quantifying the
expected number of challenges chi,j = 1. Given a set of first messages f , for each repetition
i ∈ [ρ], the expected weight of chi can be computed easily if we fix an order in which the
challenges are chosen. In particular, we choose challenges in increasing weight, starting
from 1 =

(
ℓ
0

)
element of weight 0 (which is 0ℓ), then ℓ =

(
ℓ
1

)
challenges of weight 1, then

(
ℓ
2

)
challenges of weight 2, and so on. As a consequence, in the following, for every j ∈ [ℓ], we
denote with kj =

∑j
i=0

(
ℓ
i

)
the number of attempts associated to a challenge with size less

or equal to j. Let QFi(b) be the random variable describing the number of attempts before
finding a solution, and denote with W (b, ℓ) the random variable representing the weight
of the lighter challenge satisfying Hb(f, i, chi, ri) = 0b. The expected value of W (b, ℓ) is
given by

E[W (b, ℓ)] =
ℓ∑

i=1

iPr[W (b) = i] =
ℓ∑

i=1

iPr[ki−1 < QFi(b) ≤ ki]

=
ℓ∑

i=1

iPr[ki−1 < QFi(b)] Pr[QFi(b) ≤ ki|ki−1 < QFi(b)]

=

ℓ∑
i=1

iPr[ki−1 < QFi(b)] Pr[QFi(b) ≤ ki − ki−1]

=

ℓ∑
i=1

i(1− 2−b)ki−1(1− (1− 2−b)ki−ki−1).

(4.14)

This is the expected value of the weight of the challenge, and therefore the expected
number of group elements that must be revealed in each repetition of the plain Fischlin
transform. Note that this value is a function of b since from b we determine ℓ = b + 5.
We summarize this value for different parameter choices in Table 4.4, using λ = 128 as
security parameter.
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b ρ ℓ #Group Actions #1s Query Compl. Overhead (Kb)

2 64 7 448 54 256 -
3 43 8 344 51 344 -
4 32 9 288 48 512 -
5 26 10 260 48 832 -
6 22 11 242 48 1408 -
7 19 12 228 48 2432 -
8 16 13 208 46 4096 -

Table 4.4: Given the security level λ = 128, as parameters b, ρ = ⌈128/b⌉, ℓ = b+5 vary, the
table above represents the number of group action operations that must be computed by
the prover and the verifier; the expected weight of the challenge ch, the query complexity
to generate a proof with parameters b and ρ; the overhead, which is always zero.

Notice that the expected number of queries that the prover must perform depends on
the value of b since the digests are random elements in {0, . . . , 2b−1}, therefore in order to
find the target challenge satisfying the Fischlin’s predicate the expected number of queries
in 2b. Since the number of repetitions is ρ the overall query complexity to generate a
proof is ρ · 2b. Table 4.4 also points out that the weight of the challenges is quite high. We
describe some optimization that allows us to slightly improve the size of the proof reducing
the weight of the challenge.

A first attempt to address this problem could be as follows. Similarly to what we have
done for the Unruh transform, we would like to always have challenges of weight 1. In
this case, this means that the challenge embedded in a proof has a weight that does not
exceed the number of repetitions. To ensure this, according to the observation by Chen
and Lindell in [CL24], the prover should consider challenges of approximately 2b+5 bits (see
Equation (4.12)) to guarantee to be able to try only challenges of weight ≤ 1 while seeking
an inversion of Hb of 0b. Consequently, this will necessitate the calculation of 2b+5ρ group
actions, rendering the selection of parameters highly inefficient from a computational cost
perspective.

A second approach which could be helpful in the creation of a proof associated with a
lighter challenge takes inspiration from the transform introduced in the previous subsection
and would be to look for a collision of the hash function Hb over all ρ repetitions of the
Fischlin transform. This approach allows to reduce the weight of the challenges included
in the NIZKP obtained using the transform proposed by Fischlin [Fis05], while it increases
the amount of random oracle queries that must be performed to output a valid NIZKP.
This optimization is surpassed from every perspective by the optimization presented by
Kondi and Shelat [KS22] which reduces even more the weight of the challenges, making
and also reduces the query complexity of the scheme.

Optimization by Kondi and Shelat [KS22]. In [KS22], the authors propose a
modification of the Fischlin transform that results in a reduced query complexity. The re-
duction in query complexity naturally results in a reduction in challenge weight. The idea is
the following: instead of looking for a preimage of the digest 0b, for each of the ρ repetitions,
the authors instruct the prover to create ρ

2 pairs of first messages (f1, f2), · · · , (fρ−1, fρ),
and for each i ∈ [ρ2 ] to look for challenges ch2i−1, ch2i so that the corresponding digests
H2b(f, 2i−1, ch2i−1, r2i−1) = H2b(f, 2i−1, ch2i, r2i), where the digest size is doubled. This
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yields the same soundness error, using the same number ρ of repetitions of the Sigma
protocol. The authors show in [KS22, Section 5.1] that the query complexity using this
approach is reduced by the 10-15% for values of b and this increases the efficiency by re-
ducing the number of challenges to try to find a solution. This allows to reduce the weight
of the challenges if we keep the challenge space unchanged. Below we report the expected
weight of the challenges when we use this optimization. Note that we needed to increase
the number of repetitions for ρ = 43 and ρ = 19 to 44 and 20 respectively, to guarantee
that we could create all the needed pairs.

In order to make a fair comparison with the performance analysis of the Fischlin trans-
form, we must evaluate the expected weight of challenges when the query complexity and
the number of group actions computed is the same. Given a value of b as the number of
output bits of the random oracle in both Fischlin and our transform, this can be done by
assigning to each of the ρ(b) repetitions of the Fischlin transform a number ℓ(b) of first
messages of Σ⋆ that is equal to the number L(b) of first messages of Σ⋆ used in our trans-
form divided by ρ, that is, ℓ(b) = L(b)/ρ(b), where ρ(b) = ⌈128/b⌉. Notice also that, given
the size of the challenge ℓ(b), we can compute the expected query complexity for each of
the ρ blocks and also the expected weight associated with the challenges, using Equation
4.14. Results are reported in Table 4.5.

F
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ch
lin

-K
S

2 · b ρ L #Group Actions #1s Query Compl. Overhead (Kb)

4 64 320 320 72 244 -
6 44 352 352 54 325 -
8 32 544 544 38 464 -
10 26 858 858 31 744 -
12 22 1430 1430 27 1249 -
14 20 2440 2440 25 2269 -
16 16 4112 4112 20 3635 -

Table 4.5: Given the security level λ = 128, as parameters b, ρ and L vary, the table
reports the number of group action operations that must be computed by the prover and
the verifier, the expected weight of the challenge ch and the query complexity to generate
a proof with parameters b and ρ.

Regarding Table 4.5, notice that the number of group action to be computed equals
L = ρ · ℓ which is always greater of equal to the corresponding value L in Table 4.1 for the
same value of b. The number of ones and the expected query complexity of the challenge
is computed experimentally on 1000 random proofs. More importantly, once fixed the
desired challenge weight, the transform always behaves worse than the one introduced in
the previous subsection and described in Table 4.1.

4.3.5 Trading Query Complexity for More Compact NIZKP
We introduce a technique which can be used to balance between the query complexity and
the completeness error. We have seen that it is possible to obtain completeness 1 simply
by setting L = 2b(τ − 1) + 1. The doubt that naturally arises is whether it is possible to
reduce L so that ϵPc is still reasonably low, but L is significantly lower than 2b(τ − 1) + 1.
To answer this question, we model the hash function as a random oracle and compute the
probability that in a sequence of L elements with values in {0, . . . , 2b−1} there are at least
τ occurrences of the same element. To answer this question we introduce the definition of
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k-counterimaginable functions.

Definition 4.3.12 (k-Counterimaginable Function). Let m,n and k be three natural num-
bers, and consider a function f : [m] −→ [n]. We say that f is k-counterimaginable if,
for every i ∈ [n] it holds that |{f−1(i)}| ≤ k. Furthermore, we denote by F(k,m, n) the
number of k-counterimaginable functions f : [m] −→ [n]. Formally:

F(k,m, n) := |{f : [m] −→ [n] : f is k-counterimaginable}|.

This reflects the problem of computing the completeness error ϵPc for the scheme de-
scribed in Construction 1. The probability that P fails to produce a valid proof π ̸= ⊥
is

ϵPc =
F(τ − 1, L, 2b)

(2b)L
. (4.15)

where F(τ − 1, L, 2b) is the number of (τ−1)-counterimaginable functions and (2b)L is the
number of functions with domain size L and codomain size 2b. The formula for quantifying
F(k,m, n) is given by the following result.

Proposition 4.3.13. Let m,n and k be three natural numbers. Then,{
F(k,m, n) =

∑⌊m/k⌋
c=0

1
c!

(∏c−1
j=0

(
m−kj

k

))
F(1, c, n)F(k − 1,m− kc, n− c)

F(1,m, n) = m!
(
n
m

)
.

(4.16)

Proof. If k = 1, the number of 1-counterimaginable (or injective) functions f : [m] −→ [n]
can be computed considering that every element of the domain must be set by f to a
different element of the codomain. We have

(
n
m

)
different subsets of [n] with cardinality

m, and for each subset we can choose f in m! different ways. If k > 1, F(k,m, n) can
be computed recursively computing the number of maps Nk,c which have c k-uples of
colliding domain elements (as c varies in {0, . . . , ⌊m/k⌋}) and such that they are (k − 1)-
counterimaginable on the remaining elements, which is

Nk,c = (1/c!)

( c−1∏
j=0

(
m− kj

k

))
F(1, c, n)F(k − 1,m− kc, n− c)

where

• (1/c!)
(∏c−1

j=0

(
m−kj

k

))
is the number of way one can pick c subsets of k elements out

of m;

• F(1, c, n) is the number of way the c subsets can be assigned to different values in n;

• F(k − 1,m− kc, n− c) is the number of (k − 1)-counterimaginable functions on the
elements that ar not part of the c k-tuple.

Therefore, since the sets just described are a partition of the set of k-counterimaginable
functions, the thesis follows.

Remark 4.3.14. The number of functions that satisfy Def. 4.3.12 can be used to describe
a generalization of the birthday paradox in which we are interested in quantifying the
probability that, among m people, at least k of them have the same birthday.
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This result allows us to quantify the completeness probability, and therefore, having
fixed parameters L, τ, b, compute α so that a prover is able to sign with probability 1−2−α.
According to [CL24], we provide sets of parameters so that the completeness error is
ϵPc < 2−40.

Example 4.3.15. In the following, we consider an instance of GAO where we took b = 4
and τ = 33. Notice that, in order to have a completeness error 0, it is sufficient to choose
L = 2b(τ − 1) + 1 = 513. In Table 4.4 we represent, by varying L, the completeness
probability that we would obtain. In particular, to reach a completeness error ϵP▲

c ≤ 2−40

we need L ≥ 506. To reach a completeness error of ϵP▲
c ≤ 2−10 we need L ≥ 460.
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Figure 4.4: The figure reports the completeness probability (1− ϵPc ) for a GAO’s instance
with b = 4, τ = 33. The green dashed vertical line corresponds to L = 513 and is associated
to a completeness error ϵPc = 0.

General Construction

Our construction is as follows.

Construction 4. Let (P,V) be an effective Sigma protocol with challenges of ℓ bits for
relation R. We define a non-interactive proof system (P■,V■) for relation R in the random
oracle model which is defined by the following parameters. Let L be the total number of
“parallel repetitions” conducted, τ the weight of the challenge in the proof, b the output
size in bits of the random oracle, and kmax the maximum number of attempts in order to
create a NIZKP. Then the algorithms (P■,V■) are defined as follows.

• Prover.

1. The Prover P■
H(x, y) initializes an integer counter k = 1 and runs the prover

P(x, y) in L independent repetitions to obtain L first messages f1, . . . , fL. Let
f = (f1, . . . , fL).

2. P■
H sets Tk(d) = ∅ for every d ∈ {0, 1}b. Given i ∈ [L], P■

H(x, y) computes
d := H(k, x, f , i, 1, zi) ∈ {0, . . . , 2b− 1} (where V (x, fi, 1, zi) = 1) and adds i to
Tk(d).

3. Being D = {d : |Tk(d)| ≥ τ}
– if D ̸= ∅, sample d̄ ∈ D uniformly at random, and sample uniformly at

random T ′
k(d̄) ⊆ Tk(d), with |T ′

k(d̄)| = τ . P generates ch ∈ {0, 1}L setting,
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∀i ̸∈ T ′
k(d̄) chi = 0, and chi = 1 otherwise. Finally, for every i ̸∈ T ′

k(d),
the prover sets zi to be the response associated to fi and chi, and outputs
π = (k, fi, chi, zi)i∈[L].

– If D = ∅ and k < kmax, then P■ sets k := k+1 and goes to Step 2, otherwise
returns ⊥.

• Verifier. The verifier V■
H , on input x and π = (k, fi, chi, zi)i∈[L] accepts if and only

if the following conditions holds:

1. k ≤ kmax;

2. V1(x, fi, chi, zi) = 1 for every i ∈ [L];

3. zi = 1 on exactly τ indexes i1, . . . , iτ ;

4. H(k, f, i1, 1, zi1) = · · · = H(k, f, iτ , 1, ziτ ).

This construction allows the prover and the verifier to compute a smaller number of first
messages, i.e. to compute less group actions compared to Construction 1, which is desirable
according to Principle 1. The cost incurred is for the prover, who may need to compute
up to L hash functions as many as kmax times, potentially increasing the query complexity
for the prover to L · kmax. In contrast, the verifier benefits from this setup by receiving
the transcripts along with an index k ∈ [kmax]. We prove that also Construction 4 is a
non-interactive zero-knowledge proof of knowledge with online extractor as for Definition
4.3.3.

Theorem 4.3.16. Let (P,V) be an effective Sigma protocol for relation R. Define (P■,V■)
as the non-interactive proof system obtained by applying Construction 1 to (P,V). Assum-
ing

1−
(
1− 1

2b(τ−1)

)kmax

≤ 2−λ, τ ≤ L < 2b(τ−1)+1, and kmax ≤

 −40

log2

(
F(τ−1,L,2b)

(2b)L

)


then (P■,V■) is a non-interactive zero-knowledge proof of knowledge for relation R (in
the random oracle model) with an online extractor, completeness error ϵ

P■
c ≤ 2−40, and

soundness error ϵ
P■,Ext■
s ≤ 2−λ.

Proof. Completeness In this construction the completeness error is given by

ϵPc = Pr
[
⊥ $←−P(w, x)|(w, x) ∈ R

]
= Pr[ ∀i ∈ [kmax] : {d : |Ti(d)| ≥ τ} = ∅]
= (Pr[{d : |Ti(d)| ≥ τ} = ∅])kmax

=

(
F(τ − 1, L, 2b)

(2b)L

)kmax

≤ 2−40.

and the expected number of salts k that the prover must try is (2b)L

F(τ−1,L,2b)
.

Zero-Knowledge We design a simulator Sim■ which uses the simulator Sim▲ that we
have presented in the proof of Theorem 4.3.11. The way it answers to random oracle
queries is the same way used by Sim▲.

Once it receives from D0 a pair (w, x) ∈ R, Sim■ executes the following operations:
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1. Sim■ sets k = 1

2. if k > kmax, Sim■ returns ⊥. Otherwise Sim■ generates L digests d
(k)
j , j ∈ [L],

sets Tk(d) = {j ∈ [L] : d
(k)
j = d},∀d ∈ {0, . . . , 2b − 1}, and sets Dk = {d ∈

{0, . . . , 2b − 1} : Tk(d) ≥ τ}.
3. if D = ∅ then the simulator increments k by 1 and starts again from Item 2.

4. if D ̸= ⊥ set k = k, Sim■ samples at random d in D and a random subset
T ′
k
(d) ⊆ Tk(d) of cardinality τ . Then it computes ch setting chi = 1,∀i ∈ T ′

k
(d),

and chi = 0 otherwise.

5. Sim■ runs ∀i ∈ [L] the simulator Sim of the underlying effective Sigma protocol
Σ⋆ on statement x and challenge chi, generating L transcripts (fi, chi, zi).

6. Sim■1 programs the hash table H1 as H0 to which are added the pairs,

((f, i, chi, zi), d
(k)
i ), ∀k ≤ k,

i.e. H1(k, x, f , i, chi, zi) = d
(k)
i and outputs (π,H1) =

(
{(k, fi, chi, zi)}i∈[L], H1

)
.

Online Extractability According to Def. 4.3.3, the scheme described in Construction
4 admits an online extractor if there exists an algorithm Ext which, on input π =
(k, x, (fi, chi, zi)i∈[L]) and QH(A), outputs (except with negligible probability) a wit-
ness w for x. As for the extractor described in the proof of Theorem 4.3.11, this
extractor loops through the queries in QH(A) and the transcripts included in the
proof looking for two valid transcripts for the statement x with the same first mes-
sage and different challenges.

We can assume that the algorithm A, that the extractor Ext■ interacts with, only
makes queries

• of the form (k, x, f , i, chi, zi);

• with k ≤ kmax;

• for chi = 1;

• such that V (x, fi, chi, zi) = 1;

and also that it makes a meaningful random oracle query for every transcript included
in the proof π associated to chi = 1. We can restrict to this kind of algorithm for
the same reasons described in the proof of theorem 4.3.11.

Let π = (k, {(fi, chi, zi)}i∈[L]) be the proof of x that A has generated and f =
(f1, . . . , fL). If A has managed to produce a proof without letting Ext■ extract the
witness, then QH(A) does not contain a query (k, x, f , i, 1, z′i) for any i ∈ [L] such
that chi = 0, where (k, f, x) is the prefix associated to π. This means that A has
managed to guess τ components that for the prefix (k, f, x) yield the same digest d.
But this happens with probability

ϵA,Ext■
s = 1−

(
1− 1

2b(τ−1)

)kmax

≤ 2−λ

since, for any value of k ∈ [kmax], the security is the same as in the proof of Theo-
rem 4.3.11.
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Observe that the prover can reduce the amount of group action computations by ac-
cepting to be forced to compute a higher amount of inexpensive hash computations. In
particular, the expected number of hash computations Q(b, L) will be given by Q(b, L) =
L·Pr[{d : T (d) ≥ τ} ≠ ∅]−1. In Table 4.6 we provide the expected number of first messages
needed to guarantee that the prover can create a NIZKP. This number corresponds to the
completeness error ϵ

P■
c = 1

2 .

G
A

O
0
.5

b τ L #Group Actions #1s Query Compl. Overhead (Kb)

2 68 229 229 68 458 -
3 46 284 284 45 568 -
4 35 385 385 34 770 -
5 28 570 570 28 1140 -
6 24 863 863 24 1726 -
7 20 1344 1344 20 2688 -
8 18 1994 1994 18 3988 -

Table 4.6: As b, τ and s vary, L is computed so that the completeness error is approximately
0.5. For each choice (b, τ), the tests were done on 1000 random samples, taking as a result
the smallest L such that the associated completeness error was smaller than 0.5. The query
complexity reported in this table is the theoretical mean of the associated random variable.

Notice that, for the parameter choice described in the previous table, since ϵ
P■
c = 0.5,

if the corresponding value of kmax is set to 40, then the expected number of different k
that P■ must try to generate a NIZKP π is 2, and the prover fails (outputting ⊥) only
with probability 2−40.

4.3.6 Optimizations and Applications
Below we propose two standard optimizations, the seed tree and the multiple public-key
optimizations, observing how the transformation introduced above behaves in this regard.

The Seed Tree Optimization

To reduce the size of the proof, it is possible to optimize the way seeds are built and
revealed. A standard technique to generate the L seeds used to generate the first messages
of the sigma protocol consists in generating them all starting from a single λ-bits seed
seed. This seed is given in input to a PRF : {0, 1}λ → {0, 1}2λ where the first λ bits of
the output will be the left child and the second λ bits are the right child of seed. The
procedure is repeated until all the needed leaves have been generated. Note that to reveal
the seeds corresponding to the challenges chi = 0 in our constructions will be sufficient to
reveal the parents of these elements that are not shared with the seeds corresponding to
chi = 1. According to [Bor+23, Proposition 2], let L = L1 + L2 + · · · + Lu, where Li are
the powers of two defining the structure of the seed tree. Then, let U ⊆ [L], |U | = τ be
the set of leaves of the tree that must remain hidden, the number of seeds that must be
revealed to disclose all the other leaves in L \ U is not greater than

Nseed = τ log(L/τ) + u− 1.
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The Multiple Public-Key Optimization

Using multiple public keys is a well-established technique to manage the trade-off between
the size of the public key and the size of the proof [DFG19]. The idea behind it is to
introduce several public keys y1, . . . , ys, obtained from several secret keys g1, . . . , gs by
computing yi = gi ⋆ x. In this way, given a commitment x̃ = g ⋆ x, the possible challenges
are given by the union of all the paths g̃g−1

i between yi and the commitment, together
with the path g̃ which sends x to x̃. The challenge space then grows from {0, 1} to a larger
set {0, . . . , s}. A schematic representation of this technique is proposed in Figure 4.5.

x y1 y2 ys

x̃

g1

g2

gs

g̃

g̃g−1
1

g̃g−1
2

g̃g−1
s

· · ·

Figure 4.5: Graphical representation of Σ⋆ when s public keys are used.

We adapt the description of the GAO transform to the case in which the public key of
the prover is given by s set elements y1, . . . , ys. In this new scenario, the challenge space
Ch has cardinality s+1. Notice that in this case, the security of the whole protocol is based
on mGAIP. Furthermore, the new protocol preserves the correctness, online extractability,
and zero-knowledge properties. We observe that, unlike the effect that multiple public
keys have on NIZKP obtained by applying the Fiat-Shamir transform, the use of multiple
public keys with our transform does not reduce the soundness error of the protocol, but
instead reduces its completeness error and allows the prover to consider a smaller number
L of first messages. As before

ϵPc = Pr
[
⊥ $←−P(x, y) | (x, y) ∈ R

]
= (Pr[ {d : |Tk(d)| ≥ τ} = ∅])kmax .

If s = 1, as we have previously noted, this probability can be computed looking for the
probability of having at least τ collisions between L random variables. If s > 1, we have to
look for the probability of a τ -collision between L sets of random variables, where every set
has s elements. Given the difficulty of providing an explicit formula for this probability,
we resort to experimental results, which are reported in Table 4.7.

Applications. In the following, we propose an application of this transform to LESS
[Bia+20], a code-based scheme currently competing for the NIST standardization of post-
quantum signatures alternative to those based on lattices. LESS is based on a sigma
protocol Σ⋆ where the basic set X is a [n, k] linear code over Fq, and the group acting
on this set is the group of monomial maps, i.e. those maps obtained by permuting the
starting code, and possibly scaling the coefficients. In particular, a [n, k] linear code can
be represented in systematic form using ℓX = k(n−k) log(q))s bits, while a monomial map
can be seen as the composition of a permutation matrix Sn with a diagonal matrix (F∗

q)
n of

non-zero entries, and can be represented with n (log(n) + ⌈log(q)⌉) bits. For the security
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b ρ Ls=1 Ls=2 Ls=3 Ls=4 Ls=5 Ls=6 Ls=7

2 68 229 134 102 88 80 75 72
3 46 284 153 111 89 77 69 63
4 34 385 199 139 109 91 79 70
5 28 570 290 200 151 124 105 93
6 24 863 437 296 225 182 153 133
7 20 1344 674 444 337 276 231 198
8 18 1994 1001 669 501 405 336 289

Table 4.7: As b, ρ and s vary, the table shows the values of L so that the completeness
error (of a single iteration) is approximately 0.5. For each choice (b, ρ, s), the tests were
done on 1000 random samples, taking as a result the smallest L such that the associated
completeness error was smaller than 0.5.

parameter λ = 128 bits we have q = 127, n = 252 and k = 126, so that the size of a group
elements is sizeLESSG = 237 bytes, and the size of set element is sizeLESSX = 13892 bytes. We
stress that a seed is a λ bit sting, so it can be represented with 16 bytes. Table 4.8 reports
the associated values for different parameters choices. The code used to compute data for
this section can be found at https://github.com/triki96/GAO-transform

b τ L Nseed sizeLESSpk (Kb) sizeLESSSig (Kb) b τ L Nseed sizeLESSpk (Kb) sizeLESSSig (Kb)

s
=

1

2 68 229 140 13.9 18.4

s
=

5

2 68 80 68 69.5 17.2
3 46 284 141 13.9 13.2 3 46 77 49 69.5 11.7
4 35 385 138 13.9 10.2 4 35 91 72 69.5 9.2
5 28 570 144 13.9 8.9 5 28 124 88 69.5 8
6 24 863 151 13.9 8.1 6 24 182 76 69.5 6.9
7 20 1344 142 13.9 7 7 20 276 82 69.5 6.1
8 18 1994 132 13.9 6.4 8 18 405 94 69.5 5.7

s
=

2

2 68 134 70 27.8 17.2

s
=

6

2 68 75 71 83.4 17.3
3 46 153 95 27.8 12.4 3 46 69 48 83.4 11.7
4 35 199 106 27.8 9.8 4 34 79 72 83.4 9.2
5 28 290 114 27.8 8.4 5 28 105 59 83.4 7.6
6 24 437 125 27.8 7.7 6 24 153 75 83.4 6.8
7 20 674 123 27.8 6.7 7 20 231 85 83.4 6.1
8 18 1001 114 27.8 6.1 8 18 336 92 83.4 5.7

s
=

3

2 68 102 71 41.7 17.3

s
=

7

2 68 72 69 97.3 17.2
3 46 111 97 41.7 12.5 3 46 63 51 97.3 11.7
4 34 139 105 41.7 9.7 4 34 70 70 97.3 9.1
5 28 200 86 41.7 8 5 28 93 60 97.3 7.6
6 24 296 98 41.7 7.3 6 24 133 74 97.3 6.9
7 20 444 105 41.7 6.4 7 20 198 83 97.3 6
8 18 669 113 41.7 6.1 8 18 289 92 97.3 5.7

s
=

4

2 68 88 70 55.6 17.2
3 46 89 49 55.6 11.7
4 34 109 72 55.6 9.2
5 28 151 88 55.6 8
6 24 225 99 55.6 7.3
7 20 337 103 55.6 6.4
8 18 501 96 55.6 5.8

Table 4.8: Once fixed the values s, b, τ , the table above represents the value L necessary
to have ϵ

P■
c = 0.5 in Construction 4, as well as the number of needs Nseed needed in the

proof, the size sizeLESSpk of the public key, and the size sizeLESSSig of the proof.
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Conclusions

Throughout this thesis, we have considered some of the main aspects behind code-based
digital signatures, such as their construction, cryptanalysis, and theoretical foundations.
For each of these contexts, we asked ourselves several questions that we tried to answer.

We wondered whether it was possible to build a hash&sign digital signature scheme
that was both secure and efficient, trying to answer this question by proposing a scheme
that takes advantage of both QC and LDPC codes, and we reported a recent attack that
unfortunately makes its use impractical.

Regarding cryptanalysis, we break the UF-CMA security of HWQCS, describing a
theoretical attack, and implementing it concretely. We also tried to build a distinguisher
for the codes used by Wave, the generalized normalized (U,U + V ) codes. We showed the
limits of this approach and how the work done in this direction, although not sufficient to
build an efficient distinguisher, can have value in its own right. In particular, we built new
algorithms to estimate the weight distribution of a given linear code.

Regarding theoretical foundations, we considered the fixed-weight optimization under
a security standpoint, proving that a fixed-weight repetition of a (k1, . . . , kµ)-special-sound
(2µ + 1)-round public-coin interactive proof enjoys knowledge soundness. With this, we
provided a direct, tight results on the security of the underlying interactive proofs of many
recent signatures, such as CROSS. Finally, in contexts in which it is necessary to produce
proofs of knowledge, but an online-extractable transform is required (and therefore Fiat-
Shamir is not a viable option), we asked ourselves whether it was possible to construct a
transform that took into account a priori the unbalanced challenges. We proposed a new
transform, showing how it behaves compared to those already known.

In an attempt to answer the above questions, we ended up with even more doubts
than we started with. The problem of building code-based hash&sign signature schemes is
still open, despite some promising schemes recently proposed, such as [DAST19], and our
attempt to build a distinguisher has left more questions than answers. Similarly, having
proven knowledge soundness for the interactive protocol underlying CROSS is a good first
step in proving the formal security of this scheme, but there is more work to be done in this
direction. Ultimately, the proposed transformation represents an initial, exploratory effort
that requires further investigation and refinement to reach a satisfactory state of maturity.

“As long as a branch of science offers an abundance of problems, so long it is
alive; a lack of problems foreshadows extinction or the cessation of independent
development.”

David Hilbert, 1900
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