Post-Quantum Cryptography: Towards Commutative Supersingular Isogeny Key Exchange

Candidate Giovanni Tognolini Supervisor Prof. Nadir Murru

University of Trento

19 March 2021

Index

- 1 The Framework
 - Pre Quantum Diffie-Hellman
 - The Quantum Threat
 - The Problem
- 2 CRS
 - Related Theory
 - The protocol
 - Problems
- CSIDH
 - Related theory
 - Changes
 - The protocol

Pre Quantum Diffie-Hellman

Public parameters	A group $G = \langle P \rangle$ of order N .	
	Alice	Bob
Pick random secret	$a \in G$	$b \in G$
Compute public data	A = [a]P	B = [b]P
Exchange data	$A \longrightarrow$	$\longleftarrow B$
Compute shared secret	S = [a]B	S = [b]A

 ${\bf Figure:\ Diffie-Hellman\ key-exchange\ protocol.}$

The Quantum Threat

Solves integer factorization problem and discrete logarithms in polynomial time.

The Problem

Are we able to provide a drop-in post-quantum replacement for DH?

Section 2: Outline

- The Framework
 - Pre Quantum Diffie-Hellman
 - The Quantum Threat
 - The Problem
- 2 CRS
 - Related Theory
 - The protocol
 - Problems
- CSIDH
 - Related theory
 - Changes
 - The protocol

Definition (Schreier graph)

Let G be a group acting freely on a set <math>X through the map

$$G \times X \to X$$

 $(\sigma, x) \mapsto \sigma \cdot x$

Definition (Schreier graph)

Let G be a group acting freely on a set <math>X through the map

$$G \times X \to X$$

 $(\sigma, x) \mapsto \sigma \cdot x$

Definition (Schreier graph)

Let G be a group acting freely on a set X through the map

$$G \times X \to X$$

 $(\sigma, x) \mapsto \sigma \cdot x$

Definition (Schreier graph)

Let G be a group acting freely on a set <math>X through the map

$$G \times X \to X$$

 $(\sigma, x) \mapsto \sigma \cdot x$

Definition (Schreier graph)

Let G be a group acting freely on a set X through the map

$$G \times X \to X$$

 $(\sigma, x) \mapsto \sigma \cdot x$

$$X = G = \mathbb{Z}_{13}^*$$

 $S = \{2, 2^{-1}\} \cup \{3, 3^{-1}\} \cup \{5, 5^{-1}\}$

Where do we find a Schreier graph?

Isogeny graph

Definition (Isogeny)

An isogeny is a morphism $\varphi: E \to E'$ such that $\varphi(O_E) = O_{E'}$

Definition (Isogeny graph)

Let \mathbb{K} be a field. An *isogeny graph* is a directed graph such that:

- ullet Its vertices are \mathbb{K} -isomorphism classes of elliptic curves over \mathbb{K} .
- ullet Its edges are equivalence classes of isogenies defined over $\mathbb K$ between such curves

Where do we find a Schreier graph?

Isogeny graph

Definition (Isogeny)

An isogeny is a morphism $\varphi: E \to E'$ such that $\varphi(O_E) = O_{E'}$

Definition (Isogeny graph)

Let \mathbb{K} be a field. An *isogeny graph* is a directed graph such that:

- ullet Its vertices are \mathbb{K} -isomorphism classes of elliptic curves over \mathbb{K} .
- \bullet Its edges are equivalence classes of isogenies defined over $\mathbb K$ between such curves

Observation

The structure of an isogeny graph strongly depends on the structure of $\operatorname{End}(E)$.

Theorem (Deuring)

- ullet The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of $\operatorname{End}(E)$.

Theorem (Deuring)

- ullet The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- \bullet We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of $\operatorname{End}(E)$.

Theorem (Deuring)

- The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of End(E).

Theorem (Deuring)

- The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- \bullet We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of $\operatorname{End}(E)$.

Theorem (Deuring)

- ullet The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- \bullet We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of $\operatorname{End}(E)$.

Theorem (Deuring)

- ullet The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- \bullet We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of End(E).

Theorem (Deuring)

- \bullet The integer ring $\mathbb{Z}.$
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Observation

The structure of an isogeny graph strongly depends on the structure of End(E).

Theorem (Deuring)

- ullet The integer ring \mathbb{Z} .
- An order \mathcal{O} in a quadratic imaginary field $(\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K \subseteq K := \mathbb{Q}(\sqrt{-d}))$.
- A maximal order in a quaternion algebra.
- We consider curves of type 2.
- ullet We consider isogeny of degree a prime l.
- We would like l such that $\left(\frac{\Delta_K}{l}\right) = 1$.

Figure: A volcano of 3-isogenies and the corresponding tower of orders.

Figure: A volcano of 3-isogenies and the corresponding tower of orders.

Figure: A volcano of 3-isogenies and the corresponding tower of orders.

Definition (Ideal class group)

Let \mathcal{O} be an order in a number field K. The *ideal class group* of \mathcal{O} is the quotient

$$\mathrm{Cl}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

Definition (a-torsion)

Let $\mathfrak{a}\subseteq\mathcal{O}$ be an integral invertible ideal of norm coprime to q. We define the $\mathfrak{a}\text{-}torsion\ subgroup\ of\ }E$ as

$$E[\mathfrak{a}] = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \}.$$

The most unique property of (separable) isogenies is that they are entirely determined by their kernel.

Given an ideal $\mathfrak{a} \subseteq \mathcal{O}$ as above, it is natural to define the isogeny $\varphi_{\mathfrak{a}} : E \to E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$

(University of Trento)

Theorem

The class group $Cl(\mathcal{O})$ acts freely and transitively on $Ell_q(\mathcal{O})$ through the map

$$\operatorname{Cl}(\mathcal{O}) \times \operatorname{Ell}_q(\mathcal{O}) \to \operatorname{Ell}_q(\mathcal{O})$$

 $(\mathfrak{a}, E) \mapsto \mathfrak{a} \cdot E := E/E[\mathfrak{a}]$

We have found a set $(\mathrm{Ell}_q(\mathcal{O}))$ and a group $(\mathrm{Cl}(\mathcal{O}))$ acting on it regularly

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod \ell$$

Where is our symmetric subset S?

Proposition

- \bullet l Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- \bullet l Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- \bullet l Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- \bullet l Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

Where is our symmetric subset S?

Proposition

- *l* Elkies prime.
- $(l) = l \cdot \hat{l}$, where $l = (\pi \lambda, l)$ and $\hat{l} = (\pi \mu, l)$ where

$$\pi^2 - t\pi + q = (\pi - \lambda)(\pi - \mu) \mod l$$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

Figure: Graph of horizontal isogenies on 12 curves, with isogenies of three different degrees

(University of Trento)

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs (I,\hat{I}) together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs (I,\hat{I}) together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

Figure: Graph of horizontal isogenies on 12 curves, with isogenies of three different degrees

(University of Trento)

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

Figure: Graph of horizontal isogenies on 12 curves, with isogenies of three different degrees

(University of Trento)

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O}).$

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

We could collect more pairs $(\mathfrak{l},\hat{\mathfrak{l}})$ together to build a symmetric subset of $\mathrm{Cl}(\mathcal{O})$.

Figure: Graph of horizontal isogenies on 12 curves, with isogenies of three different degrees

(University of Trento)

CRS: The Protocol

Public parameters	An elliptic curve E over a finite field \mathbb{F}_q A set of Elkies primes $L = \{l_1, \dots, l_m\}$	
	A Frobenius eigenvalue λ_i for each l_i	
	Alice	Bob
Pick random secret	$ \rho_A \in L^* $	$ \rho_B \in L^* $
Compute public data	$E_A = \rho_A(E)$	$E_B = \rho_B(E)$
Exchange data	$E_A \longrightarrow$	$\longleftarrow E_B$
Compute shared secret	$E_{AB} = \rho_A(E_B)$	$E_{AB} = \rho_B(E_A)$

 ${\bf Table:}\ {\bf Couveignes-Rostovtsev-Stolbunov}\ {\bf key}\ {\bf exchange}\ {\bf protocol.}$

CRS: Security

Definition (Key recovery problem)

Given two elliptic curves E_0 , E defined over \mathbb{F}_p with the same rational endomorphism ring \mathcal{O} , find an ideal \mathfrak{a} of \mathcal{O} such that $[\mathfrak{a}]E_0 = E$.

CRS: Problems

Observation

- Breaking the CRS scheme amounts to solve an instance of the abelian hidden-shift problem, for which quantum algorithms with subexponential time complexity are known to exist.
- The protocol is unacceptably slow.

CRS: Problems

Observation

- Breaking the CRS scheme amounts to solve an instance of the abelian hidden-shift problem, for which quantum algorithms with subexponential time complexity are known to exist.
- The protocol is unacceptably slow.

Index

- The Framework
 - Pre Quantum Diffie-Hellman
 - The Quantum Threat
 - The Problem
- 2 CRS
 - Related Theory
 - The protocol
 - Problems
- CSIDH
 - Related theory
 - Changes
 - The protocol

CSIDH: Main Idea

Try to use supersingular curves and supersingular isogeny graphs.

For these curves the full endomorphism ring is isomorphic to and order in a quaternion algebra.

However, if we consider:

- Curves over \mathbb{F}_p .
- Isogenies over \mathbb{F}_p .

$$\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{-d})$$

We can adapt the previous theory!

CSIDH: Beneficts

$Supersingular\ curves'\ beneficts$

- Structure of $Cl(\mathcal{O})$.
- Elkies primes.
- Efficient evaluation of the class group action.
- Public key & PKV.

CSIDH: Class group structure

$$\#\operatorname{Cl}(\mathcal{O}) \approx \sqrt{|D_{\pi}|} = \sqrt{|t_{\pi}^2 - 4p|}$$

- The size of $Cl(\mathcal{O})$ is as big as possible.
- ullet For a fixed security level we can do an almost minimal choice for p.

CSIDH: Elkies primes

Previous problem

Inefficiency in the search for Elkies primes.

E supersingular elliptic curve over \mathbb{F}_p , $p = 4 \cdot l_1 \cdots l_n - 1$

$$#E(\mathbb{F}_p) \equiv p+1 \pmod{l_i}$$

$$\equiv 4 \cdot l_1 \cdots l_n - 1 + 1 \pmod{l_i}$$

$$\equiv 0 \pmod{l_i}$$

$$\pi^{2} - t\pi + p \equiv 0 \pmod{l_{i}}$$

$$\pi^{2} + p \equiv 0 \pmod{l_{i}}$$

$$\pi^{2} - 1 \equiv 0 \pmod{l_{i}}$$

$$(\pi + 1)(\pi - 1) \equiv 0 \pmod{l_{i}}$$

Every l_i is an Elkies prime and $l_i = (\pi - 1, l), \hat{l_i} = (\pi + 1, l)$

4日 > 4日 > 4 日 > 4 日 >

CSIDH: Class group action

How to compute $[\mathfrak{l}]E$ for $\mathfrak{l}=(l,\pi-\lambda)$

- Find a basis of the *l*-torsion.
- Compute the eigenspaces of the Frobenius.
- ullet Apply Vélu type formulas to a basis point P of the correct eigenspace.

Observation $(\lambda = 1)$

In this case P (has order l and) lies in $\ker(\pi - 1)$, i.e. is defined over \mathbb{F}_p .

Observation $(\lambda = -1)$

In this case P (has order l and) lies in $\ker(\pi+1)$, i.e. is defined over \mathbb{F}_{p^2} .

CSIDH: Public key & PKV

Before we encoded an elliptic curve with its j-invariant.

And now?

Proposition

Suppose

- $p \ge 5, p \equiv 3 \pmod{8}$.
- E/\mathbb{F}_p supersingular elliptic curve.

Then

$$\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\pi] \Longleftrightarrow E \cong_{\mathbb{F}_p} E_A : y^2 = x^3 + Ax^2 + x$$

for some $A \in \mathbb{F}_p$. Moreover, if such an A exists then it is unique.

CSIDH: Public key & PKV

Observation (Public key)

We can use the coefficient A as public key.

Observation (Public key validation)

When we receive A all we have to do is to check that $y^2 = x^3 + Ax^2 + x$ is supersingular.

CSIDH: The Protocol

Public parameters	A prime p of the form $4 \cdot l_1 \cdots l_n - 1$			
	$E := y^2 = x^3 + x \text{ over } \mathbb{F}_p$			
	Alice	Bob		
Pick random secret	$(e_1,,e_n) \in \{-m,,m\}^*$	(1 / / 10 /)		
Compute public data	$E_A = [\mathfrak{a}]E = [\mathfrak{l}_1^{e_1}\mathfrak{l}_n^{e_n}]E$	$E_B = [\mathfrak{b}]E = [\mathfrak{l}_1^{e'_1}\mathfrak{l}_n^{e'_n}]E$		
Exchange data	$E_A \longrightarrow$	$\longleftarrow E_B$		
Compute shared secret	$E_{AB} = [\mathfrak{a}]E_B$	$E_{AB} = [\mathfrak{b}]E_A$		

Table: CSIDH key exchange protocol.

Conclusions

- Does not avoid subexponential attack (HSP).
- Drop-in post quantum replacement for Diffie Hellman.
- Speed is practical (80 ms for a single key-exchange).
- Smallest public key size in the portfolio of PQ-crypto.

Thanks

Extra

Keys' dimension

Public key

 $A \in \mathbb{F}_p$ can be represented with $\log p$ bits.

Private Key

We need to find how big is the quantity $n \cdot \log m$.

$$(2m+1)^n \approx \# \operatorname{Cl}(\mathcal{O})$$
$$\log (2m+1)^n \approx \log \# \operatorname{Cl}(\mathcal{O})$$
$$n \cdot \log (2m+1) \approx \log \sqrt{p}$$
$$n \cdot \log m \approx \log p/2$$

CRS: Volcanology

Couveignes focuses on regular curves E/\mathbb{F}_q , with $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathbb{Q}(\sqrt{-d})$.

Given E/\mathbb{F}_q , how many isogenies defined over \mathbb{F}_q do have E as domain?

Proposition

Let E/\mathbb{F}_q an elliptic curve and $l \neq p$ be a prime.

- There are l+1 distinct isogenies of degree with domain E defined over the algebraic closure $\overline{\mathbb{F}}_q$.
- **2** There are 0, 1, 2 or l+1 isogenies of degree l with domain E defined over \mathbb{F}_q .

CRS: Volcanology

What is the relationship between two isogenous curves?

Proposition (Horizontal and vertical isogenies)

Let $\varphi: E \to E'$ be an isogeny of prime degree , and let $\mathcal{O}, \mathcal{O}'$ be the orders corresponding to E, E'. Then, either $\mathcal{O} \subseteq \mathcal{O}'$ or $\mathcal{O}' \subseteq \mathcal{O}$, and one of the following is true:

- $\mathcal{O} = \mathcal{O}'$, in this case φ is said to horizontal.
- $[\mathcal{O}' : \mathcal{O}] = l$, in this case φ is said to be ascending.
- $[\mathcal{O}:\mathcal{O}']=l$, in this case φ is said to be descending.

CRS: Volcanology

Global stucture: how many horizontal and vertical *l*-isogenies does a given curve have?

		\rightarrow	\uparrow	\downarrow
$\mathbb{Z}[\pi] = \mathcal{O}_K$	Surface = Middle = Floor	$1 + \left(\frac{\Delta_K}{l}\right)$		
$\mathbb{Z}[\pi] \subsetneq \mathcal{O}_K$	Surface	$1 + \left(\frac{\Delta_K}{l}\right)$		$l - \left(\frac{\Delta_K}{l}\right)$
	Middle		1	l
	Floor		1	

Table: Number and types of *l*-isogenies

Atkin:
$$\left(\frac{\Delta_K}{l}\right) = -1$$

Ramified:
$$\left(\frac{\Delta_K}{l}\right) = 0$$

Ramified:
$$\left(\frac{\Delta_K}{l}\right) = 0$$
 Elkies: $\left(\frac{\Delta_K}{l}\right) = +1$

CSIDH: Classical security

Exhaustive key search

Meet-in-the-middle attack

Pohlig-Hellman style attack

CSIDH: Quantum security

Observation (The query model)

Given a black-box function f, we have to answer a question about it. Instead of measuring the time complexity of our algorithm, we measure the query complexity: the number of queries it makes to f.

Why do we use the query model?

- \bullet Often the function f is efficient to implement.
- All known interesting quantum algorithm fit in the query paradigm.

Quantum attacks based on the abelian hidden shift problem

Definition (A-HSP)

Let A be a finite abelian group, T a finite set and let $f_1, f_2 : A \to T$ be black-box functions. The functions f_1, f_2 are said to hide a shift $s \in A$ if f_1 is injective and $f_2(x) = f_1(xs)$ for all $x \in A$. The goal is then to recover s by evaluating the functions f_1 and f_2 .

$$f_1: \mathrm{Cl}(\mathcal{O}) \longrightarrow \mathrm{Ell}(\mathcal{O}) \qquad f_2: \mathrm{Cl}(\mathcal{O}) \longrightarrow \mathrm{Ell}(\mathcal{O})$$

$$\mathfrak{b} \longmapsto [\mathfrak{b}] E_0 \qquad \mathfrak{b} \longmapsto [\mathfrak{b}] E_A$$

These function hide the private key \mathfrak{a} as a shift:

$$f_1(x \cdot \mathfrak{a}) = [x \cdot \mathfrak{a}] E_A$$

$$= [x] [\mathfrak{a}] E_A$$

$$= [x] E_B$$

$$= f_2(x)$$

Quantum attacks on the A-HSP

Kuperberg

space and query complexity: $2^{O(\sqrt{\log n})}$

Regev

query complexity: $2^{O(\sqrt{\log n \log \log n})}$ space complexity: polynomial

Kuperberg

classical space and query complexity: $2^{O(\sqrt{\log n})}$ quantum space: $O(\log n)$

- These algorithms are shown to have subexponential complexity in the limit.
- \bullet In a generic group the query complexity coincides with the time complexity, $$\operatorname{BUT}$$

in our case the evaluation of f_1, f_2 means evaluating the action $[\mathfrak{a}] E_0, [\mathfrak{a}] E_A$, which is non-trivial.

The time complexity must take into account this important factor.

• Regev: $L_N[1/2, \sqrt{2}] = \exp\left[(\sqrt{2} + 1)\sqrt{\ln N \ln \ln N}\right]$ where $N = \#\operatorname{Cl}(\mathcal{O})$.

• Bisson: $L_p[1/2, 1/\sqrt{2}] = \exp \left[(1/\sqrt{2} + 1)\sqrt{\ln p \ln \ln p} \right]$

• Regev + Bisson: $L_p[1/2, 3/\sqrt{2}] \Longrightarrow L_p[1/2, 1+\sqrt{2}].$

• Kuperberg + Bisson: $L_p[1/2, 1/\sqrt{2}]$.

• Regev: $L_N[1/2, \sqrt{2}] = \exp\left[(\sqrt{2} + 1)\sqrt{\ln N \ln \ln N}\right]$ where $N = \#\operatorname{Cl}(\mathcal{O})$.

• Bisson: $L_p[1/2, 1/\sqrt{2}] = \exp \left[(1/\sqrt{2} + 1)\sqrt{\ln p \ln \ln p} \right]$

• Regev + Bisson: $L_p[1/2, 3/\sqrt{2}] \Longrightarrow L_p[1/2, 1+\sqrt{2}].$

• Kuperberg + Bisson: $L_p[1/2, 1/\sqrt{2}]$.

CSIDH: Security Estimates

	Classical $\log \sqrt[4]{p}$	Regev $\log L_N[1/2,\sqrt{2}]$	Kuperberg $3\sqrt{\log N}$	Kuperberg 1.8 $\sqrt{\log N}$	Regev $\log L_p[1/2, 3/\sqrt{2}]$	Kuperberg $\log L_p[1/2,1/\sqrt{2}]$
CSIDH-512	128	62	48	29	139	47
CSIDH-1024	256	94	68	41	209	70
CSIDH-1792	448	129	90	54	288	96

CSIDH: Instantiations

	Clock cycles	Wall-clock time	Stack Memory
Key validation	$5.5 \cdot 10^6 \text{ cc}$	2.1 ms	4368 bytes
Group action	$106 \cdot 10^6 \text{ cc}$	40.8 ms	2464 bytes

Table: Performance number for the described proof-of-concept implementation, averaged over 10000 runs on an Intel Skylake i5 processor clocked at 3.5 GHz.