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Pre Quantum Diffie-Hellman

Public parameters A group G = (P) of order N.
Alice Bob
Pick random secret ac G be G
Compute public data A = [a] P B =[P
Exchange data A— «~— B
Compute shared secret S = [a|B S=[bA

Figure: Diffie-Hellman key-exchange protocol.
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The Quantum Threat

Shor’s algorithm Solves integer factorization problem and

P. Shor discrete logarithms in polynomial time.

y of Trento)



The Problem

Are we able to provide
a drop-in post-quantum replacement for DH?
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Section 2: Outline

© CRS
o Related Theory
o The protocol
o Problems




CRS: Theory

Definition (Schreier graph)
Let G be a group acting freely on a set X through the map
GxX—X
(o,2) >0 -2

Let S C G be a symmetric subset. The Schreier graph of (S, X) is the graph whose
vertices are the elements of X, and such that z, 7 € X are connected by an edge if
and only if 2/ = o - z for some o € S.
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CRS: Theory

Definition (Schreier graph)
Let G be a group acting freely on a set X through the map
GxX—X
(o,2) >0 -2

Let S C G be a symmetric subset. The Schreier graph of (S, X) is the graph whose
vertices are the elements of X, and such that z, 7 € X are connected by an edge if
and only if 2/ = o - z for some o € S.

X: G: Z;g
S={2,27"yu {3,371y u {55}
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CRS: Theory

Where do we find a Schreier graph? J
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CRS: Theory

Where do we find a Schreier graph? )

Isogeny graph )

Definition (Isogeny)
An isogeny is a morphism ¢ : E— E' such that ¢(Og) = Om

Definition (Isogeny graph)
Let K be a field. An isogeny graph is a directed graph such that:

o Its vertices are K-isomorphism classes of elliptic curves over K.

o Its edges are equivalence classes of isogenies defined over K between such curves
v

(University of Trento) 19 March 2021



CRS: Theory

Observation J

The structure of an isogeny graph strongly depends on the structure of End(E).
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CRS: Theory

Observation

The structure of an isogeny graph strongly depends on the structure of End(E).

Theorem (Deuring)

The ring End(E) is isomorphic to one of the following:
o The integer ring Z.

o An order O in a quadratic imaginary field (Z[r] C O C Ok C K := Q(v/—d)).

o A maximal order in a quaternion algebra.

o We consider curves of type 2.
o We consider isogeny of degree a prime L
e We would like [ such that (%) =1.

(University of Trento)
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CRS: Theory

End(E)

® O«

Figure: A volcano of 3-isogenies and the corresponding tower of orders.
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CRS: Theory

End(E)

Ok

Z[x]

Figure: A volcano of 3-isogenies and the corresponding tower of orders.
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CRS: Theory

Definition (Ideal class group)
Let O be an order in a number field K. The ideal class group of O is the quotient

ClO) = Z(O)/P(O).

Definition (a-torsion)

Let a C O be an integral invertible ideal of norm coprime to g. We define the
a-torsion subgroup of E as

Ela)={P€ E| a(P) =0 for all o € a}.

The most unique property of (separable) isogenies is that they are entirely
determined by their kernel.
¢
Given an ideal a C O as above, it is natural to define the isogeny
¢a : E— E,, where Eq = E/E[a]

(University of Trento) 19 March 2021



CRS: Theory

Theorem

The class group C1(O) acts freely and transitively on Ell,(O) through the map
Cl(0) x Ell,(0) — Ell,(0)

(a, E) — a- E:= E/Eq]

ty of Trento)

We have found a set (Ell,(O)) and a group (C1(O)) acting on it regularly
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Where is our symmetric subset S? J
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Where is our symmetric subset S?

Proposition
The following are equivalent:

o [ Elkies prime.
o () =1-1, where [ = (7 — A\, ) and [ = (7 — p, [) where

7w —tr+q=(mr—A)(wr—p) mod I
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CRS: Theory

Where is our symmetric subset S? J
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CRS: Theory

We could collect more pairs (I, 1) together to build a symmetric subset of C1(O). J
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We could collect more pairs (I, 1) together to build a symmetric subset of C1(0). J
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CRS: Theory
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CRS: The Protocol

Public parameters An elliptic curve FE over a finite field
A set of Elkies primes L ={l,...,ln}
A Frobenius eigenvalue A; for each ;

Alice Bob
Pick random secret pa €L pp € L*
Compute public data Es = pa(E) Ep = pp(E)
Exchange data Eys — «~—— FEp
Compute shared secret Eap = pa(EB) Eap = pB(Ea)

Table: Couveignes-Rostovtsev-Stolbunov key exchange protocol.

(University of Trento) 19 March 2021



CRS: Security

Definition (Key recovery problem)

Given two elliptic curves Ep, E defined over ), with the same rational endomorphism
ring O, find an ideal a of O such that [a] Ey = E.




CRS: Problems

Observation

o Breaking the CRS scheme amounts to solve an instance of the abelian
hidden-shift problem, for which quantum algorithms with subexponential time
complexity are known to exist.

19 March 2021



CRS: Problems

Observation

o Breaking the CRS scheme amounts to solve an instance of the abelian
hidden-shift problem, for which quantum algorithms with subexponential time
complexity are known to exist.

o The protocol is unacceptably slow.

19 March 2021



Index

© CsibH
o Related theory
o Changes
@ The protocol




CSIDH: Main Idea

Try to use supersingular curves and supersingular isogeny graphs. J

For these curves the full endomorphism ring is isomorphic to and order in a
quaternion algebra.

However, if we consider:
o Curves over [Fp.

o Isogenies over .

Endr, (E) 2 O C Q(v—4d)

We can adapt the previous theory! J




CSIDH: Beneficts

Supersingular curves’ beneficts
e Structure of C1(O).
o Elkies primes.
o Efficient evaluation of the class group action.
o Public key & PKV.




CSIDH: Class group structure

#Cl(0) ~ v/Drl = V& ~ 4l )

o The size of Cl(O) is as big as possible.

o For a fixed security level we can do an almost minimal choice for p.




CSIDH: Elkies primes

Previous problem

Inefficiency in the search for Elkies primes.

And now?
E supersingular elliptic curve over Fp, p=4-4L---1,—1
#EF,)=p+1 (mod &)
=4-L---l,—1+1 (modll)

=0 (mod ;)

7 —tn+p=0 (mod k)
™ +p=0 (mod L)

™ —-1=0 (modl)
(m+1)(r—1)=0 (mod k)

Every ; is an Elkies prime and [; = (7 — 1,1),[; = (7 + 1, 1)

(University of Trento)



CSIDH: Class group action

How to compute [[|E for [ = (I, 7 — \)
o Find a basis of the [-torsion.
o Compute the eigenspaces of the Frobenius.

o Apply Vélu type formulas to a basis point P of the correct eigenspace.

Observation (A = 1)

In this case P (has order [ and) lies in ker(m — 1), i.e. is defined over F,.

Observation (A = —1)

In this case P (has order [ and) lies in ker(w + 1), i.e. is defined over F 2.

(University of Trento) 19 March 2021



CSIDH: Public key & PKV

Before we encoded an elliptic curve with its j-invariant.

And now?

Proposition
Suppose
e p>5 p=3 (mod 8).
e E/F, supersingular elliptic curve.

Then
Endr,(E) & Z[n] <= E =y, E4 : =2+ A" +

for some A € F,. Moreover, if such an A exists then it is unique.

of Trento) 19 March 2021



CSIDH: Public key & PKV

Observation (Public key)

We can use the coefficient A as public key.

Observation (Public key validation)

When we receive A all we have to do is to check that o? = 2 + A2® + z is
supersingular.

(University of Trento)



CSIDH: The Protocol

Public parameters A prime p of the form 4 -1 ---1, — 1
E=y=a2+zoverF,
Alice Bob
Pick random secret (e1y.ry€n) € {—m,....m}* (€l,...,e,) € {—m,...,m}*
Compute public data Ea=[aE=[{..."E Ep = [b]E= [[fll...IZL]E
Exchange data Es— <+— FE3B
Compute shared secret Esp = [a]EB Esp =[b]E4

Table: CSIDH key exchange protocol.

(University of Trento) 19 March 2021



Conclusions

@ Does not avoid subexponential attack (HSP).

@ Drop-in post quantum replacement for Diffie Hellman.

Speed is practical (80 ms for a single key-exchange).

e Smallest public key size in the portfolio of PQ-crypto.

19 March 2021
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Keys’ dimension

Public key
A € F, can be represented with log p bits.

Private Key
We need to find how big is the quantity n - log m.
(2m+1)" ~ #CI(0)
log (2m + 1)" ~ log # C1(O)

n-log(2m+ 1) =~ log \/p
n-log m ~ log p/2

(University of Trento)



CRS: Volcanology

Couveignes focuses on regular curves E/F,, with End(E) = O C Q(v/—d).

J

Given E/F,, how many isogenies defined over F, do have E as domain?

Proposition
Let E/F, an elliptic curve and [ # p be a prime.

@ There are [+ 1 distinct isogenies of degree with domain E defined over the
algebraic closure F,.

@ There are 0, 1,2 or [+ 1 isogenies of degree | with domain E defined over F,.

(University of Trento) 19 March 2021



CRS: Volcanology

What is the relationship between two isogenous curves?

Proposition (Horizontal and vertical isogenies)

Let ¢ : E— E be an isogeny of prime degree , and let O, O’ be the orders
corresponding to E, E'. Then, either O C O’ or O’ C O, and one of the following is
true:

e O = (', in this case ¢ is said to horizontal.
e [0’ : O] =1, in this case ¢ is said to be ascending.

@ [0 : O] =1, in this case ¢ is said to be descending.

(University of Trento) 19 March 2021



CRS: Volcanology

Global stucture: how many horizontal and vertical lisogenies does a given curve J

have?
I B
_ — M _ Ak
Z|r] = Ok | Surface = Middle = Floor ‘ 1+ (T)
Zlr] € Ok Surface 1+ (ATK) I— (ATK)
Middle 1 l
Floor 1

Table: Number and types of lisogenies

Atkin: (ﬂ) =-1 Ramified: (A—ZK) =0 Elkies: (ﬂ) =41

l

19 March 2021



CSIDH: Classical security

Exhaustive key search J

Meet-in-the-middle attack J

Pohlig-Hellman style attack J

(University of Trento)



CSIDH: Quantum security

Observation (The query model)

Given a black-box function f, we have to answer a question about it. Instead of
measuring the time complexity of our algorithm, we measure the query complexity:
the number of queries it makes to f.

Why do we use the query model?
o Often the function fis efficient to implement.

o All known interesting quantum algorithm fit in the query paradigm.

19 March 2021



Quantum attacks based on the abelian hidden shift problem

Definition (A-HSP)

Let A be a finite abelian group, T a finite set and let fi,fo : A — T be black-box
functions. The functions fi, f2 are said to hide a shift s € A if f; is injective and
fo(z) = fi(zs) for all z € A. The goal is then to recover s by evaluating the functions
f1 and fg.

fi:Cl(O) — El(O) f2:Cl(O) — EI(O)
b — [b] By b— [b] Ea

These function hide the private key a as a shift:
f1(1~ a) = [I a] EA

= (4] [a] Ea
= [2] Es

(University of Trento) 19 March 2021



Quantum attacks on the A-HSP

Kuperberg
space and query complexity: 90(y/1og n)
Regev
query complexity: 20(v/lognloglogn)
space complexity: polynomial
Kuperberg

classical space and query complexity: 20(v1ogn)
quantum space: O(log n)

(University of Trento) 19 March 2021



o These algorithms are shown to have subexponential complexity in the limit.
o In a generic group the query complexity coincides with the time complexity,
BUT
in our case the evaluation of fi, o means evaluating the action [a] Eo, [a] E4,
which is non-trivial.

¢

The time complexity must take into account this important factor.

(University of Trento) 19 March 2021



o Regev: Ly[1/2,v/2] = exp [(\/5—1— 1)vIn Nlnln N] where N = # CL(O)

o Regev + Bisson: L,[1/2,3/V2] = L,[1/2,1 + V2]

o Bisson: L,[1/2,1/+/2] = exp [(1/\/5 + 1)\/m]

ty of Trento)




o Regev: Ly[1/2,v/2] = exp [(\/5—1— 1)vIn NlnIn N] where N = # C1(O).
o Bisson: L,[1/2,1/+/2] = exp [(1/\/5 + 1)\/m]

o Regev + Bisson: L,[1/2,3/V2] = L,[1/2,1 + V2]

o Kuperberg + Bisson: L,[1/2,1/v/2]. J
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CSIDH: Security Estimates

& S| S

S 5| S

- SIE_ | ER || o Fd

8 = | 2= QoD = | 2~

= % >z | gl | 53 > x| 8.

@ - &= a1l 2, &3 o

S e | @ w | B = 0 S | 2 e

OL | ml | Mo | XA [T o)

CSIDH-512 128 62 48 29 139 47
CSIDH-1024 256 94 68 41 209 70
CSIDH-1792 448 129 90 54 288 96

19 March 2021
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CSIDH: Instantiations

‘ Clock cycles ‘ Wall-clock time ‘ Stack Memory

Key validation 5.5-10° cc 2.1 ms 4368 bytes
Group action 106 - 10 cc 40.8 ms 2464 bytes

Table: Performance number for the described proof-of-concept implementation, averaged
over 10000 runs on an Intel Skylake i5 processor clocked at 3.5 GHz.

19 March 2021
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