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Introduction

The Diffie-Hellman key-exchange protocol is, both literally and figuratively, at the foun-
dation of public-key cryptography. The goal is for two parties, Alice and Bob, to derive
a shared secret from each other’s public keys and their own private keys. Diffie and Hell-
man’s original solution [29] is beautifully and brutally simple: given a fixed prime p and
a primitive element g in the finite field Fp (that is, a generator of the multiplicative group
F∗p), Alice and Bob choose secret keys a and b, respectively, in Z/(p−1)Z. Alice computes

and publishes her public key A = ga, and Bob his public key B = gb; the shared secret
value is S = gab, which Alice computes as S = Ba, Bob as S = Ab. The security of
the shared secret depends on the hardness of the computational Diffie-Hellman Problem
(CDHP), which is to compute S given only A, B, and the public data of the structures
that they belong to. For finite-field Diffie-Hellman, this means computing gab given only
g, ga, and gb (mod p). The principal approach to solve the CDHP is to solve the Discrete
Logarithm Problem (DLP), which is to compute x from g and gx. We thus recover a
from A = ga (or, equivalently, b from B = gb), then power B by a (or A by b) to recover
S. Attacking the DLP means directly attacking one of the public keys, regardless of any
particular shared secret they may be used to derive. Over the past four decades, the Diffie-
Hellman protocol has been generalized from multiplicative groups of finite fields to a range
of other algebraic groups, most notably elliptic curves [68, 55]. Partly motivated by this
cryptographic application, there has been great progress in discrete logarithm algorithms
for some groups.

The most stunning development in discrete logarithm algorithms came with the rise of
the quantum computation paradigm: Shor’s quantum algorithm [84] solves the discrete
logarithm problem (and thus breaks Diffie-Hellman) in any group in polynomial time and
space on a quantum computer. The development of quantum computers of even mod-
est capacity capable of running Shor’s algorithm remains a big challenge in experimental
physics: at the time of writing, the largest number factored by Shor’s algorithm is 35,
using IBM’s Q System One. Quantum computers are developing fast, and cryptographic
research has already bent itself to the construction of post-quantum cryptosystems, de-
signed to be used on conventional computers while resisting known quantum attacks.

The common use of Diffie-Hellman makes the search for a drop-in post-quantum replace-
ment for this protocol particularly relevant today. While many promising post-quantum
candidates for public-key encryption and signatures have been developed, finding a simple
post-quantum drop-in replacement for Diffie–Hellman (as opposed to a KEM) has proven
to be surprisingly complicated. Perhaps surprisingly, given the loudly trumpeted quantum
destruction of elliptic curve cryptography by Shor’s algorithm, the most serious candidates
for post-quantum Diffie–Hellman come from isogeny-based cryptography, which is founded
in the deeper theory of elliptic curves. The key idea in moving from conventional elliptic-



curve cryptography to isogeny-based cryptography is that points on curves are replaced
with entire curves, and relationships between points (scalars and discrete logarithms) are
replaced with relationships between curves (isogenies). Isogeny classes have just enough
algebraic structure to define efficient asymmetric cryptosystems, but not enough to make
them vulnerable to Shor’s algorithm.

In this discussion we describe the process that led to the cryptographic community to
find a scheme that naturally replace the Diffie-Hellman protocol, therefore we study in
detail its safety properties and specifics.

The Plan. In the first chapter we will give a general overview of our framework, intro-
ducing the well-known discrete logarithm problem and the classical Diffie-Hellman protocol
as a scheme on a group of the form F∗p. We will then see how the cryptographic community
has modified the underlying group in order to make the scheme more secure. In particular,
we will focus on ECDH, but we will not fail to mention other instances, such as algebraic
curves with genus greater than 1. We will then introduce the threat represented by Shor
and Grover’s algorithms, and how the NIST is moving to standardize a family of algo-
rithms able to resist not only the classical computation model, but also the quantum one.
The result of this effort is the post quantum standardization process which goes by the
name NIST PQC (Post Quantum Competition). We will therefore show how, despite the
large amount of new schemes submitted to the NIST attention, none of these naturally
replace Diffie-Hellman. Up to now, the only known scheme that plays this role is CSIDH,
and it was not presented to NIST solely because it was discovered after the submissions’
end line. This scheme is based on isogenies of supersingular curves in finite fields. Unlike
other post quantum algorithms, isogeny-based cryptosystems require a deep understand-
ing of arithmetic of elliptic curves in finite fields. The following chapters lay the basis for
understanding these schemes.

The second chapter is entirely devoted to elliptic curves: in this regard the elementary
results are briefly summarized. We will then describe the main kind of maps between el-
liptic curves, with particular emphasis on isogenies. Finally, we will recall some non-trivial
results that will nevertheless be of fundamental importance throughout our discussion.

The third chapter joins the theory of elliptic curves with that of graphs. We will be-
gin by describing the ring structure of the endomorphisms set of an elliptic curve, showing
how this can take essentially three forms: an order in an imaginary quadratic field, an
order in a quaternion algebra ramified at p and ∞, or simply the integer ring Z. In the
case of curves defined over a finite field the last case is excluded. In the first case the
curve will be called ordinary, in the second case supersingular. We will describe in detail
isogeny graphs, i.e. those (multi)graphs whose vertices are classes of isomorphism of el-
liptic curves, and whose edges are isogenies between these classes. We will observe how
the structure of the endomorphism ring End(E) of a curve is decisive for the structure of
the resulting graph. In the case of ordinary curves the graph will have a structure very
regular, which takes the name of isogeny volcano; in the case of supersingular curves in
general we will have a k-regular graph, but under some restrictions we will show how to
get an isogeny volcano in this case as well.

In section four we will show why we were looking for a structure like that of isogeny
volcanoes: in fact we will show how it is possible to define a quantum resistant protocol



above. The first to realize this possibility was Couveignes, in 1997, thanks to the use of
ordinary elliptical curves [23]. However, the protocol he proposed remained unpublished
for about ten years, until Rostovtsev and Stolbunov independently proposed a modified
(and improved) version. Nevertheless, the algorithm is still impracticable. A few years
ago, however, a way was found to make this protocol feasible. The key is to use supersin-
gular curves, and to impose some limitations to the respective isogeny graph, for which
the resulting graph is an isogeny volcano, exactly like that of ordinary curves. This obser-
vation has therefore allowed contemporary research to pick up again a protocol that was
in danger of falling into disuse, and gave it back its strength. The result is the algorithm
that goes under the name of CSIDH, on which we focus all the remaining part of our
discussion.



Chapter 1

The Framework

Modern cryptography bases its security on some difficult math problems, such as factor-
ing large integers, the discrete logarithm in Z∗p and the discrete logarithm on the group
of elliptic curves. Up to now, for these problems there is no classical algorithm capable
of breaking them in polynomial time. The situation is different if we extend the analysis
not only to algorithms implemented with a classical computer, but we also include those
designed for a quantum computer, which works over a different computational model. In
this chapter we introduce the threat represented by quantum computers, with particular
emphasis on Shor and Grover’s algorithms, and the implications that their implementa-
tion would have for modern forms of communication. We will see how the cryptographic
community and the NIST (National Institute of Standards and Technology) are moving
to create quantum resistant schemes, in order to replace those currently in use. We will
focus in particular on the Diffie-Hellman key exchange, given its importance and central-
ity within almost all cryptographic protocols, and we will analyze how a post quantum
analogue of this primitive can be found. In particular we will show how isogeny-based
cryptography is the only type of cryptography up to now that provides a post quantum
algorithm analogous to Diffie Hellman. For additional details, we refer to [16], [5] and [88].

1.1 Pre-Quantum Diffie Hellman

The Discrete Logarithm Problem

Let G a finite abelian group of order N ; clearly G is the product of cyclic groups. For
a generic m ∈ N+, P ∈ G, define [m]P as P + · · · + P where P appears m times.
Define [0]P := O and [−m]P := [m](−P ). We call this function the scalar multiplication
map. Obviously it is an endomorphism, since it respects the underlying group structure
on which it acts. We can compute this maps in O(logm) operations in G, with the well
known classical algorithms. The fundamental hard algorithmic problem in G is to compute
the inverse of the scalar multiplication operation: that is, computing discrete logarithms.

Definition 1.1 (DLP). The Discrete Logarithm Problem in G is, given P and Q in
〈P 〉 ⊆ G, compute x ∈ Z such that Q = [x]P .

This problem, given its importance and centrality in cryptography, has been a subject
of deep study by the cryptographic community. We present now the best known attacks
on this problem. Any DLP instance in any group G can always be solved using O(

√
N)

operations in G, using (for example) Shanks’ baby-step giant-step algorithm (BSGS),
which also requires O(

√
N) space [82]; Pollard’s ρ algorithm reduces the space requirement
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to O(1) [78]. If N is composite and its (partial) factorization is known, then we can do
better using the Pohlig-Hellman algorithm [77], which solves the DLP by reducing to the
DLP in subgroups of G. Observe that the DLP enjoys random self-reducibility: if we have
an algorithm that solves DLPs for a large fraction 1/M of all possible inputs, then we can
solve DLPs for all possible inputs after an expected M random attempts. Suppose we
want to solve an arbitrary DLP instance Q = [x]P . We choose a random integer r, try to
solve Q = Q+ [r]P = [x+ r]P for x+ r, and if we succeed then we recover x = (x+ r)− r.
After M randomizations, we expect to find an r for which Q lands in the set of inputs to
which the algorithm applies.

The Diffie-Hellman Protocol

Now we briefly recall Diffie-Hellman in the abstract. Let G be a cyclic group of order N ,
and fix a public generator P of G. Public keys are elements of G; private keys are bit
strings, interpreted as elements of Z/NZ. The protocol goes as follows:

• (Setup) Global parameter of the scheme is a large cyclic group G = 〈P 〉 of order N .

• (Key generation) Alice samples an element a ∈ G, which becomes her private key.
Her public key is the element A := [a]P . Bob does the same getting b ∈ G as private
key, and B := [b]P as public key.

• (Key exchange) Alice receives B from Bob and computes [a]B. Bob receives A from
Alice and computes [b]A.

Alice and Bob have the same value S because [a]B = [ab]P = [ba]P = [b]A. Clearly
each (public,private)-keypair (Q = [x]P, x) presents a DLP instance in G. The protocol is
summarized in Table 1.1.

Public parameters A group G = 〈P 〉 of order N .

Alice Bob

Pick random secret a ∈ G b ∈ G
Compute public data A = [a]P B = [b]P

Exchange data A −→ ←− B
Compute shared secret S = [a]B S = [b]A

Table 1.1: Diffie-Hellman key-exchange protocol.

The secret S shared with the Diffie-Hellman key exchange is normally not directly used
as a key for symmetric cryptographic systems; rather, it should be treated with a key
derivation function (KDF) to produce a correct symmetric key K. This map essentially
hashes the secret S, by evenly distributing the entropy of S in K. In this way an attacker
who wants to infer any information on K must first compute S.

The security of the (entire) shared secret depends on the hardness of the Computational
Diffie-Hellman Problem (CDHP) in G.

Definition 1.2 (CDHP). The Computational Diffie-Hellman Problem in G is, given
P,A = [a]P , and B = [b]P in G, to compute S = [ab]P .

2



Remark 1.3. The two problems described above, DLP and CDHP, are deeply connected:
on one hand, an algorithm that can solve DLP in a group G is able to solve CDHP in the
same group G by simply considering it as a DLP instance with parameters ([a]P, [ab]P ).
On the other hand, an algorithm able to solve CDHP is not proven to be able to solve DLP.
This direction is a subject of many studies, however it is now generally believed that the
DLP and CDHP are equivalent for the kinds ofG that cryptographers use in practice. Since
solving DLP instances is the only way we know to solve CDHP instances, Diffie–Hellman
is generally considered to be a member of the DLP-based family of cryptosystems.

The lifespan of keypairs is crucial in Diffie–Hellman-based cryptosystems. We distinguish
two modalities in which the key can be used: static and ephemeral mode. Static Diffie-
Hellman key exchanges always use the same Diffie-Hellman private keys. So, each time the
same parties do a DH key exchange, they end up with the same shared secret. If both DH
private keys are reused, the term static-static is used. If only one side uses the same key,
the term is ephemeral-static. Alice may obtain Bob’s long-term public key and complete
a Diffie-Hellman key exchange with him (and start using the shared secret) without any
active involvement on his part. Static Diffie–Hellman is therefore an important example
of a Non-Interactive Key Exchange (NIKE) protocol. In some implementations, it might
make sense to have one static DH private key, especially on the server side, for performance
reasons. Ephemeral Diffie-Hellman generates a new temporary DH private key for every
connection: Alice and Bob’s keypairs are unique to each execution of the protocol and
thus the same key is never used twice. This enables Forward Secrecy (FS), which means
that if the long-term private key of the server gets leaked, past communication is still
secure. When both sides always create new DH private keys for new connections, this is
called ephemeral-ephemeral. Ephemeral Diffie–Hellman is therefore essentially interactive.

Remark 1.4 (Public-key validation). Efficient public-key validation1 is an important,
and often overlooked, requirement for many Diffie-Hellman systems, particularly those
where keys are re-used. Suppose Alice derives a shared secret key K from a Diffie-Hellman
exchange with Bob’s public key B, and then uses K to communicate with Bob. A malicious
Bob might construct an invalid public key B in such a way that K reveals information
about Alice’s secret key a. If (a,A) is ephemeral then Bob has learned nothing useful
about a, since it will never be used again; but if the keypair (A, a) is to be reused, as
in static Diffie-Hellman, then secret information has been leaked, and Alice thus becomes
vulnerable to active attacks2. Public key validation is simple in a finite field: it usually
suffices to check the order of the element. Antipa, Brown, Menezes, Struik, and Vanstone
describe the process for elliptic-curve public keys [2]. We will see that this is a more serious
problem in post-quantum systems.

Concrete Groups

Everything we have described so far has been presented in the abstract, however if we want
to instantiate this scheme, we must choose a concrete group G. The difficulty of solving
the DLP, and therefore the CDHP, varies according to the representation of G; in general
we can quantify this complexity as O(

√
N). We briefly present the most commonly used

groups to instantiate the Diffie-Hellman protocol.

• The original algorithm uses the multiplicative group F∗p of a finite field Fp. The
DLP in a finite field is subexponential: the General Number Field Sieve [62] solves

1That is, checking that a public key was honestly generated.
2Essentially, they consist in changing the information in some way by conducting some process on the

information itself, for example though the modification of transmitted or stored data.
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a DLP instances in Fp in time3 Lp[1/3, (64/9)1/3]. However, the complexity can
vary if the underlying field takes on particular forms: in extension fields of large
characteristic, or when the characteristic has a special form, the complexity is lower,
while still subexponential (see [44]); in the extreme case of extension fields of tiny
characteristic, the DLP is quasipolynomial in the field size [14].

• The generalization to groups other than that proposed by the original protocol is
immediate: less than ten years after the proposal of Diffie and Hellman, Miller [68]
and Koblitz [55], independently and almost simultaneously, propose an analog of this
protocol based on the group of points of an elliptic curve. At first glance, elliptic-
curve cryptography is just finite-field cryptography with a different algebraic group
seamlessly swapped in, and no theoretical modification. But Miller’s original article
[68] ends with an interesting observation that departs from the multiplicative group
perspective:

“Finally, it should be remarked, that even though we have phrased
everything in terms of points on an elliptic curve, that, for the key

exchange protocol (and other uses as one-way functions), that only the
x-coordinate needs to be transmitted. The formulas for multiples of a
point cited in the first section make it clear that the x-coordinate of a

multiple depends only on the x-coordinate of the original point.”

Miller is talking about elliptic curves in Weierstrass models y2 = x3 + ax+ b, where
−(x, y) = (x,−y), so x-coordinates correspond to group elements modulo sign. The
mapping (m,x(P )) → x([m]P ) is mathematically well-defined, because every [m]
commutes with [−1]. In particular Miller proposes to use as keys not the points of
an elliptical curve, but the x-coordinates of these points.

Remark 1.5. Clearly, we lose nothing in terms of security by doing this: the x-
coordinate CDHP reduces immediately to the CDHP in the elliptic curve. Given
a general CDHP oracle for E, we can compute ±[ab]P from (±P,±[a]P,±[b]P ) by
choosing arbitrary lifts to signed points on E and calling the oracle there; conversely,
given an x-coordinate CDHP oracle, we can solve CDHP instances on E by projecting
to the x-line, calling the oracle there, and then guessing the sign on S.

The idea to transmit only the x-coordinates may seem advantageous in terms of
reducing bandwidth, but in reality this is not the main advantage, in fact we could
encode the point (xP , yP ) taking into account the coordinate x, in addition to a
bit indicating the sign of the coordinate y. It is clear that there is very little to
be gained. The real practical value in Miller’s idea is that working only with x
coordinates is faster, and requires less memory: x([a]P ) can be computed from a
and x(P ) using less field operations than it would be necessary to compute [a]P
from a and P . Another important aspect of elliptic curve Diffie-Hellman is that
subexponential finite-field DLP algorithms do not apply to general elliptic curves,
and, to a general prime-order elliptic curve, there is no algorithm with complexity
better than O(

√
N). Indeed, the only way to make use of the geometric structure for

general curves over prime fields is to run generic O(
√
N) algorithms on equivalence

classes modulo ±1, that is considering (x, y) and (x,−y) equal. In practise this only
improves the running time by a factor of roughly

√
2 [6]. We can do better for some

3Recall that LX [α, c] = exp ((c+ o(1))(logX)α(log logX)1−α).
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elliptic curves defined over some extension fields [40, 97, 38], and for some small
special classes of curves [66, 14, 33, 86]; but in the more than thirty years since
Miller and Koblitz introduced elliptic curve cryptography, this speedup represents
the only real non-quantum algorithmic improvement for the general elliptic-curve
DLP.

• Going beyond elliptic curves, a range of other algebraic groups have been proposed
in cryptography. Koblitz proposed cryptosystems in hyperelliptic curves as a gener-
alization of elliptic curves [56]. Generalizing this group structure to the hyperelliptic
case is not straightforward: we cannot define the same group law on the set of points
lying on a hyperelliptic curve, instead a group structure can be defined on the so-
called Jacobian of a hyperelliptic curve. Indeed for elliptic curves the Jacobian turns
out to simply be isomorphic to the usual group on the set of points on this curve
(this is basically a corollary of the Abel-Jacobi theorem). Others have suggested
Jacobians of general algebraic curves, and abelian varieties [69, 81]; but as the genus
of the curve (or the dimension of the abelian variety) grows, index-calculus algo-
rithms become more effective, quickly outperforming generic DLP algorithms. At
best, the DLP for curves of fixed genus ≥ 3 is exponential, but easier than O(

√
N)

[87, 39, 28, 41]; at worst, as the genus and field size both tend to infinity, the DLP
becomes subexponential [30].

• The groups mentioned above are all algebraic groups: elements are represented by tu-
ples of field elements, and group operations are computed using polynomial formulæ.
Algebraic groups are well-suited to efficient computation on real-world computer ar-
chitectures, but they are not the only such groups: another kind consists of class
groups of number fields. Buchmann and Williams proposed Diffie–Hellman schemes
in class groups of quadratic imaginary orders [13], leading to a series of DLP-based
cryptosystems set in more general rings (see [12] for a survey); but ultimately these
are all vulnerable to subexponential index-calculus attacks.

In the classical world, therefore, elliptic curves over Fp and Fp2 and genus-2 Jacobians
over Fp2 present the hardest known DLP instances with respect to group size (and hence
key size). Elliptic curves over prime fields have become, in a sense, the gold standard to
which all other groups are compared.

1.2 The Quantum Threat

In 1996 Peter Shor, of Bell Laboratories, designs an algorithm for a quantum computer
able to solve the integer factorization problem and discrete logarithm in polynomial time
[84]. Starting from Shor’s work, in the same laboratories and in the same year, Lov Grover
draws a quantum algorithm for attacking symmetric ciphers [43]. In this case the time
required is not polynomial in the input dimension and only gives a quadratic speedup over
the classical brute force method.

The impact that the implementation of these algorithms would have on all modern cryp-
tography would be significant: public key cryptography bases its security on problems that
Shor’s algorithm is able to solve easily; the situation is different for private key cryptog-
raphy: since Grover provides a quadratic speedup over normal brute force, the algorithm
could force a 128-bit symmetric key in about 264 iterations, or a 256-bit key in about 2128
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iterations. To make these ciphers also resistant to Grover’s algorithm, it would there-
fore be sufficient to double the key length. In any case, it is still clear that a quantum
computer would put many forms of modern communication in danger. We refer to Table
1.2 for a summary of the large-scale impact a quantum computer would have on common
cryptographic algorithms, such as RSA and AES.

Algorithm Purpose Impact from quantum computer

AES Encryption Larger key sized needed
SHA-2, SHA-3 Hash Function Larger output needed

ECDSA, ECDH Signatures, key exchange No longer secure
RSA Signatures, key establishment No longer secure
DSA Signatures, key exchange No longer secure

Table 1.2: Impact of quantum computing on common cryptographic algorithms

To date there are only prototypes of this type of computer, that is machines that are
not yet able to do run the algorithms described above with numbers of cryptographic
relevance, however, large companies are investing heavily for make this happen. When
that happens, quantum computers will then have reached what is now only their potential
ability to solve the aforementioned problems, and will therefore be able to effectively break
fragile ciphers. This concept is called quantum supremacy, or ”quantum advantage”, to
emphasize the fact that this technology allows to go beyond the normal limits of classical
computers. In computational-complexity-theoretic terms, this generally means providing
a superpolynomial speedup over the best known or possible classical algorithm.

Given the scale of the problem, it is useful at this point to outline the development of quan-
tum computers over the last decade: Google had already announced plans to demonstrate
quantum supremacy by the end of 2017 by solving the problem with a superconducting 49
qubits-array. In October 2017, IBM demonstrated the 56 qubits simulation on a conven-
tional supercomputer, increasing the number of qubits needed for quantum supremacy. In
March 2018 Google announced Bristiecone, a new 72 qubits quantum computer processor,
but it is still trying to make it work: most qubits must be used to do error correction and
routine operations of this type.

It is not easy to predict how soon a large-scale quantum computer will be built, although
it is very likely that within the next 20 years or so, quantum computers large enough to
break all the public key encryption schemes currently in use will exist. The important
fact is that, a priori of the exact year in which quantum computers will represent a real
risk, we must ensure a secure migration to new cryptographic protocols, which guarantee
us protection from these threats. Migrating to new protocols smoothly and securely is an
inherently long process, just think that it took almost 20 years to implement our modern
public key cryptographic infrastructure, so we have to start working in this direction right
now.

1.3 Quantum and Post-Quantum Cryptography

There are basically two approaches for the creation of quantum resistant cryptosystems:
quantum cryptography and post-quantum cryptography.
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Quantum Cryptography

Unlike conventional cryptography, which is mainly based on number theory, quantum
cryptography uses the laws of quantum physics to generate keys and transfer information.
However, this approach collides with the numerous physical limitations of the case, as the
quantum cryptography will affect the whole cryptographic infrastructure, which involves
software, crypto-processors, hardware customization and communications infrastructure.
Any changes to this infrastructure must be carefully planned and tested to ensure com-
patibility with existing components.

Regarding crypto-processors, which are hardware chips carrying several crypto functions
such as encryption, signature generation and hashing: they are embedded in many de-
vices such as point-of-sale systems, automated teller machines and smartphones (SIM
cards). These cryptosystems rely on the current cryptographic standards, depending on
the applications, for example, for lightweight applications with lower amounts of data
these crypto-processors mostly rely on small crypto algorithms such as AES. Moving to
quantum-resistant crypto primitives will affect the performance of these crypto-processors,
since they involve more computations, and they could even render some processors obso-
lete. Therefore companies may be required to buy new hardwares to handle the increased
workload.

Regarding communications infrastructure: with quantum cryptography, we will need very
direct channels, and we will also need to amplify them often: quantum key distribution is
possible using optical fiber over few tens of kilometers but not more due to single photons
(during quantum communication, information is encoded into photons) getting absorbed
by the fiber. In addition, quantum cryptography require a technology that will force us
to rebuild all various underground connections between servers.

Furthermore this technology does not have enough algorithms to perform the various
routines needed in cryptography, for example up to now it is not possible to have an
authentication scheme.

Post Quantum Cryptography

Post quantum cryptography, on the other hand, involves the use of classical algorithms,
which base their security on problems that both normal and quantum computers can not
break. Compared to the first approach, the latter has the advantage of providing algo-
rithms that work efficiently on a classical computer, both in terms of time and memory.

We list below the most important families into which the various post-quantum algo-
rithms are usually divided. For each of these families we briefly state the mathematical
problem on which they base their safety, and we describe their strengths and weaknesses.

• Lattice-based cryptography: Lattice-based cryptosystems base their security on
the well known shortest vector problem (SVP), for which, given a lattice L ⊆ Zn we
are asked to find the shortest non-zero vector v, i.e. such that

‖v‖ = min
w∈Lr{0}

‖w‖

We briefly present the best known lattice-based algorithm, the NTRUEncrypt public
key cryptosystem, also known as the NTRU encryption algorithm. Each NTRU’s in-
stance is specified by three integer parameters (N, p, q) which represent the maximal
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degree N − 1 for all polynomials in the truncated ring R := Z[X]/(XN − 1), a small
modulus and a large modulus, respectively, where it is assumed that N is prime,
q is always larger than p, and p and q are co-prime; and four sets of polynomials
Lf ,Lg,Lm and Lϕ (a polynomial part of the private key, a polynomial for genera-
tion of the public key, the message and a blinding value, respectively), all of degree
at most N − 1 . Along with these parameters we add some additional constraints
that allow this cipher to work correctly. We refer to [47] for further details.

We start with the key generation. The private key is a pair (f, g) defined in the
following way: first we choose f ∈ Lf such that is is invertible modulo p and q, i.e.
over the rings

Rp := Zp[X]/(XN − 1) Rq := Zq[X]/(XN − 1)

We denote with fp, fq its inverses, respectively. We also choose an element g ∈ Lg.
The public key is h, obtained as h := fq · g (mod q). The encryption of a message
m ∈ Lm is done as follows: chosen a random element ϕ ∈ Lϕ, the encrypted message
c is computed as c := pϕ ·h+m (mod q). For the decryption it is computed a ≡ f ·c
(mod q), choosing the representatives of Zq in [−q/2, q/2], after which the original
message m is recovered as m = fp · a (mod p), indeed

fp · a (mod q) = fp · (f · c) (mod q)

= fp · (f · (pϕh+m)) (mod q)

Since the coefficients of a are chosen in the interval [−q/2, q/2] the original message
can be properly recovered: the coefficients of the message m has been chosen in
the interval [−p/2, p/2], and so all coefficients of (f · (pϕh + m)) already lie within
the interval [−q/2, q/2] because the polynomials h, f, fp,m and prime p all have
coefficients that are small compared to q. This means that all coefficients are left
unchanged during reduction modulo q and that

fp · a (mod p) = fp · (f · (pϕh+m)) (mod p)

= fp · f ·m (mod p)

= m (mod p)

In this cryptosystem, searching for the private key f is equivalent to solve the SVP
in the lattice defined by the matrix

α 0 · · · 0 h0 h1 · · · hN−1

0 α · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

...
. . .

...
0 0 · · · α h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q


where h0, h1, ..., hN−1 are the coefficients of h and α is a suitable parameter.

NTRU, and more generally most lattice-based key creation algorithms, are rela-
tively simple, efficient, and highly parallelizable, they also offer security proofs that
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are not possible in other families of algorithms. However, usually, in the implemen-
tation of these ciphers, more particularly in the parameters’ choice, these proofs
are not taken into account, because if they were considered the parameters would
become too large. The problems of this family lie in the fact that the complexity
of the attacks is not yet well understood by the cryptographic community, and that
attacks on these ciphers often experience dramatic improvements.

• Code-based cryptography: This family provides cryptosystems in which the
cryptographic primitive uses an error correcting code C. Code-based cryptosystems
base their security on the difficulty of inverting a map such as

{Message Space} {Key Space}
m mG+ e

where G is a generator matrix of a code where correction of errors is very slow, and
with e an error vector. The protocol requires G to be of the form S · Ĝ · P , for
some invertible matrices S, P and a secret matrix Ĝ. The decoding of a word c+ e
can be done efficiently only knowing these three matrices. Since the structure of G
determines the type of code that is used by the scheme, by changing the structure of
the private matrix we can use new codes, which allow different trade-off in the size of
the keys and in the efficiency of the scheme. For example, the well-known MCEliece
cryptographic scheme is based on Goppa’s codes, so that the private key is a random
binary irreducible Goppa code and the public key is a random generator matrix of
a randomly permuted version of that code. First proposed in 1978, McEliece is a
very efficient and safe scheme [65], just think that it has received more than 40 years
of studies by cryptologists, without anyone ever being able to violate it. Although
fast, this scheme suffers from very large key sizes, due to the type of codes on which
it is based. To overcome the problem of large keys, the more recent variants of this
scheme have introduced a more articulated structure within the codes, however, this
added structure usually leads to critical attacks on these ciphers, suggesting that
McEliece is still the best choice.

• Multivariate polynomial cryptography: These schemes are based on the diffi-
culty of solving a system of multivariate polynomials defined on a finite field and with
degree greater than 1. Several multivariate cryptosystems have been proposed over
the past few decades, with many having been broken. While there have been some
proposals for multivariate encryption schemes, multivariate cryptography has his-
torically been more successful as an approach to signatures, primarily because mul-
tivariate schemes provide the shortest signature among post-quantum algorithms.

• Hash-based cryptography: Hash-based cryptography is an alternative post quan-
tum cryptographic scheme that is primarily focused on digital signatures which verify
that the document or message originated from the initial sender of the document.
There are currently no hash-based cryptographic schemes for encrypting and de-
crypting messages using asymmetric public key exchange (PKE), so additional cryp-
tographic methods would be necessary for the remaining cryptographic services.

In this family, each cryptographic primitive bases its strength on the security of a
given hash function. The concept of security for a hash function is equivalent to
make some assumptions about the properties that this map possesses. In particular,
for each secure hash function it is possible to create a new scheme that uses it. As
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a result, each suitable map produces a different corresponding hash-based signature
scheme. Even if a certain hash function becomes insecure, we can simply replace it
with a different and safe one to obtain a secure instance of the hash-based signature
scheme under consideration. Minimality of security assumptions is another feature
of these signature schemes: generally, they only require a secure cryptographic hash
function to ensure the overall security of the scheme.

• Isogeny-based cryptography: The last family contains algorithms which get
nourishment from the deeper theory of elliptic curves, as we will see throughout this
discussion. The key idea in moving from conventional elliptic-curve cryptography to
isogeny-based cryptography is that points on curves are replaced with entire curves,
and relationships between points (scalars and discrete logarithms) are replaced by
relationships between curves (isogenies). Curves that fullfill this relation are said
to belong to the same isogeny class. As we have already mentioned, isogeny classes
have just enough algebraic structure to define efficient asymmetric cryptosystems,
but not enough to make them vulnerable to Shor’s algorithm.

The underlying problem of this family of algorithms is the so called isogeny path
problem, which can be stated as follows: given two elliptic curves E,E′ defined over
a finite field Fq, and such that |E| = |E′|, find an isogeny ϕ of smooth degree that
maps E to E′. This schemes use the well studied mathematics of elliptic curves
to create a Diffie-Hellman like key exchange that can serve as a straightforward
quantum computing resistant replacement for the DH and ECDH key exchange
methods. There are three main isogeny-based algorithms: the CRS (Couveignes,
Rostovtsev–Stolbunov), SIDH (Supersingular Isogeny Key Exchange), and CSIDH
(Commutative Supersingular Isogeny Key Exchange). One of the advantages of this
primitive family is to have very small keys compared to the others; on the other hand,
the computational cost required to run each scheme is very high, and since this is a
research field entirely new in cryptography, there has not been enough analysis yet
for the community to have too much confidence in his safety.

1.4 Post-Quantum Cryptography Standardization

To ensure information security against quantum attacks, we will have to migrate to some
of these new cryptographic schemes.

Previous transitions from weaker to stronger ciphers were based on the so called security
bit paradigm, which measures the security of an algorithm based on the time complexity
of a attack done by a classical computer, for example an algorithm is said to have 128
bits of security if the difficulty of attacking it with a classical computer is comparable to
the time and resources required to brute-force search for a 128-bit cryptographic key. In
January 2016, NIST classified the standardized algorithms into groups with 80, 112, 128,
192 and 256 bits of security [3], and defined the guidelines for the transition to more secure
ciphers as follows: the family of ciphers with 80 bits of security is not considered secure
enough, furthermore, 112-bit security ciphers must be phased out gradually by 2031. Un-
fortunately this type of paradigm does not take into account the security of algorithms
against quantum cryptanalysis, therefore it is an inadequate tool to guide the transition
to quantum-resistant cryptography.

With these premises, NIST in December 2016 began a process of standardization of post-
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quantum algorithms announcing a public call for proposals. Since most symmetric prim-
itives are relatively easy to modify in a way that makes them quantum resistant, efforts
have focused on public-key cryptography, namely digital signatures and key encapsulation
mechanisms. The competition is now in its third round out of expected four, where in
each round some algorithms are discarded and others are studied more carefully. NIST
hopes to publish the standardization documents by 2024, but may speed up the process
if major breakthroughs in quantum computing are made. Below is the list of proposals
submitted to NIST in the first round, grouped by type. The counting does not take into
account candidates who have withdrawn, and if more candidates have been merged into a
single scheme, only the latter has been taken into account.

Family Signature PKE/KEM Sum

Lattice 5 23 28
Codes 3 17 20

Multivariate 7 3 10
Hash 2 0 2

Isogenies 0 1 1
Others 3 5 8

Table 1.3: NIST candidates

We informally remember the difference between key encapsulation mechanism (KEM) and
public key encryption (PKE). These notions define classes of encryption techniques, and
are tightly related: PKE’s encryption procedure, on input plaintext m and receiver R’s
public-key pkR, outputs ciphertext c, while KEM’s encryption procedure, on input receiver
R’s public-key pkR, outputs ciphertext c and key k, where c is sent to R, and k is kept
secret inside the sender, and employed in a subsequent process of data encryption. PKE’s
decryption procedure, on input c and secret-key skR, outputs plaintext m, while KEM’s
decryption procedure, on input c and secret-key skR, outputs key k [70]. It is possible to
show that these algorithms can be turned one into the other, and for this reason in the
table above they are grouped in a single column.

One of the most important challenges for the NIST competition, and more generally
for the post quantum world, is to find a suitable candidate to replace the Diffie-Hellman
protocol, given its importance and centrality for all public-key cryptography. Nowadays
this primitive is often an elementary component of some other more complicated protocol,
for example, the TLS protocol, used to establish secure Internet connections, includes an
ephemeral Diffie-Hellman protocol, or the X3DH protocol, used to establish connections in
Signal and WhatsApp, includes four simple Diffie-Hellman instances between various short
and long term key pairs. The common use of classical Diffie-Hellman therefore makes the
search for a post-quantum substitute particularly relevant today. Ideally we do not want
to limit ourselves to any substitute, which only achieves the same result, i.e. the exchange
of a common key. We would like to have a drop-in replacement instead, that is a proto-
col so suitable to replace the old one that an outside observer does not notice the difference.

Although many promising post-quantum candidates have been developed for public key
cryptography and signatures (see Table 1.3) finding a simple replacement for Diffie-Hellman,
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as opposed to a KEM, has proven to be surprisingly complicated. The only post-quantum
protocol truly similar to Diffie-Hellman is CSIDH, from isogeny-based cryptography. Un-
fortunately, this scheme was not developed until later, when the NIST process was already
underway, and therefore it could not take part in the competition. We will now provide
the theoretical background to fully understand this scheme.
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Chapter 2

Elliptic Curves

We set out below the most relevant facts regarding elliptic curves. We start by stating
some elementary results, after which we analyze the principal type of maps between curves,
dwelling on those that preserve both their group and abelian variety structure. We will
call these maps isogenies. With this new knowledge we will be able to understand further
results regarding elliptic curves, which we will state in the final section. For a more detailed
description, we refer to [35], [95], [85], [25] and [24].

2.1 Elementary Results

We initially provide the definition of an elliptic curve in its general form. For our purposes
this definition turns out not to be very practical, so we replace it with a more usable one.
However, we show that, limited to the cases of our interest, these two definitions coincide.
We then define a group structure over the set of points of a generic curve, and try to
characterize the elements of this group.

Definition 2.1 (Projective space). Let K be a field and denote with K̄ its algebraic
closure, the projective space of dimension n, denoted by Pn or Pn(K̄), is the set of all
(n+ 1)-tuples

(x0, . . . , xn) ∈ K̄n+1

such that (x0, . . . , xn) 6= (0, . . . , 0), taken modulo the relation R ⊆ K̄n+1 × K̄n+1 defined
by (

(x0, . . . , xn), (y0, . . . , yn)
)
∈ R⇐⇒ ∃λ ∈ K̄ such that xi = λyi for all i.

It is easy to prove that R is an equivalence relation. We will denote the equivalence class
of a projective point (x0, . . . , xn) with (X0 : · · · : Xn). The set of the K-rational points,
denoted by Pn(K), is defined as

Pn(K) = {(X0 : ... : Xn) ∈ Pn | Xi ∈ K for all i} .

By fixing arbitrarily the coordinate Xn = 0, we define a projective space of dimension
n− 1, which we call the hyperplane at infinity ; its points are called points at infinity.

Formally, elliptic curves are projective curves of genus 1 with a distinguished point. From
now on we suppose that the field K has characteristic different from 2 and 3. This has the
merit of greatly simplifying the representation of an elliptic curve.
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Definition 2.2 (Weierstrass equation). Let K be a field. An elliptic curve defined over
K is the locus in P2(K̄) of an equation

Y 2Z = X3 +AXZ2 +BZ3 (2.1)

with A,B ∈ K and 4A3 + 27B2 6= 0. The point O := (0 : 1 : 0) is the only point on the
line Z = 0; it is called the point at infinity of the curve.

In some ambiguous cases, to avoid confusion, we will also add to the point at infinity the
curve to which this element refers. For example, for two elliptic curves E1, E2 their points
at infinity will be denoted respectively as OE1 , OE2 .

It is customary to write Eq. (2.1) in affine form: by defining the coordinates x = X/Z
and y = Y/Z, we equivalently define the elliptic curve as the locus of the equation

y2 = x3 +Ax+B

plus the point at infinity O. In characteristic different from 2 and 3, we can show that any
projective curve of genus 1 with a distinguished point O is isomorphic to a Weierstrass
equation by sending O onto the point at infinity (0 : 1 : 0).

If we want to consider points with coordinates in some extension field K′ ⊇ K we write
E(K′), referring to the following definition

E(K′) := {(x, y) ∈ K′ ×K′ | y2 = x3 +Ax+B} ∪ {O}.

In order to count the number of points on a field K′ that satisfy the relation defined by
the elliptic curve, we clearly just have to compute the cardinality of E(K′). For example,
we can consider the elliptic curve E/F11 defined by the equation y2 = x3− 8x− 1. In this
case E(F11) consists of the neutral element O and all the points emphasized in Figure 2.1.
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Figure 2.1: E(F11) \ {O}, with E/F11 :=
(
y2 = x3 − 8x− 1

)
.

It is possible to informally define a binary operation on the points of an elliptic curve
through the well-known chord-tangent law, which we briefly recall for completeness.

Definition 2.3 (Chord-tangent law). The chord-tangent composition of two points P and
Q of an elliptic curve E is denoted by P + Q and is defined as the opposite of the third
point of intersection of the line through P and Q with E. If P and Q are the same point,
the line through them is given by the tangent to the curve at P .
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The point P +Q determined by this definition is easily shown to exist and may be deter-
mined through algebraic manipulations of the elliptic curve equation. Its coordinates can
be expressed in terms of the coordinates of P and Q and the coefficients of E. It is useful
to take note of a geometric special case. When one of the points involved is O, which can
not be represented graphically, we just draw a vertical line through the other point, and
check for intersection with E. Consider in this regard the curve y2 = x3 − 8x− 1 defined
over R. The sum operation described above can be given geometrically as illustrated in
Figure 2.2.
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Figure 2.2: E(R) \ {O}, with E/R :=
(
y2 = x3 − 8x− 1

)
.

The transposition of this operation to curves defined over finite fields remains the same at
the level of definition, but the geometric intuition is faded. In this regard, compare Figure
2.1 and Figure 2.2, where the same curve, defined on different fields, takes a radically
different appearance. Figure 2.3 shows the chord-tangent construction in the finite field
case.
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Figure 2.3: E(F11) \ {O}, with E/F11 :=
(
y2 = x3 − 8x− 1

)
.

In the example just shown, we see how the sum of P := (1, 5) and Q := (4, 8) gives (0, 7)
as a result. This operation, defined in a purely intuitive and geometric way, finds in its al-
gebraic formalization the justification of all the properties it possesses, as shown hereafter.
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Let E/Fq be an elliptic curve defined by y2 = x3 + Ax + B. Let P1 = (x1, y1) and
P2 = (x2, y2) be points on E with P1, P2 6= O. Define P1 + P2 = P3 = (x3, y3) as follows:

• If x1 6= x2 ,then

(x3, y3) =

((
y2 − y1

x2 − x1

)2

− x1 − x2,

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

)
.

• If x1 = x2 but y1 6= y2 ,then P1 + P2 = O.

• If P1 = P2 and y1 6= 0, then

(x3, y3) =

((
3x2

1 +A

2y1

)2

− 2x1,

(
3x2

1 +A

2y1

)
(x1 − x3)− y1

)
.

• If P1 = P2 and y1 = 0, then P1 + P2 = O.

Moreover, define
P +O = O + P = P

for all points P on E.

It is possible to prove that (E(K),+, O) forms a group with respect to the sum previ-
ously defined, with O as a neutral element.

Remark 2.4. It is a known fact in literature that it is possible to define a group law not
only on elliptic curves, but also on any irreducible cubic or on a conic. The way in which
two points are added is slightly different from what happens with elliptic curves. We start
by defining the sum of two points on a conic defined on an infinite field, more precisely
the field R of real numbers, however, the result we obtain is also valid for any other field.
Let Γ be a non-degenerate conic. Since, unlike what happens with elliptic curves, we do
not have an immediate candidate which plays the role of neutral element with respect to
the sum, we fix a generic point N ∈ Γ, which will fit the role. We then define the sum
operator + : Γ × Γ → Γ in the following manner: given P,Q ∈ Γ, we consider the line
passing through these points, we then trace a straight line through N , parallel to the one
obtained above. This last line must intersect Γ at another point, called R. We define R
as the result of the operation. Figure 2.4 illustrates the operation.
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Figure 2.4: Γ(R), with Γ/R :=
((

2
5

)2
x2 +

(
10
13

)2
y2 = 1

)
.

As with elliptic curves, if P = Q, then the line for these two points is the tangent to Γ
in P , and therefore to compute the sum P + P , it is sufficient to draw the line passing
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through N and parallel to the tangent to Γ in P ; the second point of intersection with
Γ will therefore be P + P . Similarly, if the line for N , parallel to that for P and Q, is
tangent to Γ in N , we take as sum P +Q = N . We also have N +N = N and P +N = P
for all P ∈ Γ. We refer to [83] for further details.

If the definition field of our conic is a finite field, the group associated with it is cyclic. This
fact allows us to use this structure in cryptographic applications. The cases of application
are typically limited to those protocols involving cyclic groups, more specifically those for
which it is necessary to compute the product n · P of an element P of the group. Using
conics we do not avoid this computation, however the computational cost may be signif-
icantly smaller, while maintaining the same resistance against external attacks. Unlike
elliptic curves, the product n ·P is defined in the same way for all points of the curve, and
the result of this operation is still a proper point of the latter. A sketch of an RSA-like
cryptosystem on general conics is given in [4].

The fact that points on an elliptic curve form an abelian group is behind most of the
interesting properties and applications. We will make extensive use of the group structure
defined above.

Definition 2.5 (n-torsion subgroup). Let E be an elliptic curve over a field K and let
P ∈ E(K). The n-torsion subgroup is

E[n] := {P ∈ E(K) : [n]P = O}

Example 2.6. Let us consider again the elliptic curve defined in Figure 2.1. In Table 2.1
we summarize the order of each point.

Point Order

O 1

(1, 5) 3

(1, 6) 3

(4, 3) 6

(4, 8) 6

(7, 0) 2

Table 2.1: Points (and respectively orders) of E/F11 :=
(
y2 = x3 − 8x− 1

)
.

It follows that the interesting torsion subgroups are given by

E[1] = {O}
E[2] = {O, (7, 0)}
E[3] = {O, (1, 5), (1, 6)}
E[6] = {O, (7, 0), (1, 5), (1, 6), (4, 3), (4, 8)}
E[0] = {O, (7, 0), (1, 5), (1, 6), (4, 3), (4, 8)}

More generally, for every elliptic curve E we have that E[0] = E and E[1] = {O}.

Proposition 2.7. Let K be an algebraically closed field of characteristic p, let E be an
elliptic curve defined over K, and let m 6= 0 be an integer. The m-torsion group of E,
denoted by E[m], has the following structure:
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• if p does not divide m, then E[m] ∼= Zm × Zm.

• If p divides m, then

E[pn] ∼=

{
Zpn for any n ≥ 0, or

{O} for any n ≥ 0.

Proof. See [85, Cor. 6.4].

For curves defined over a field of positive characteristic p, the case E[p] ∼= Z/pZ is called
ordinary, while the case E[p] ∼= {O} is called supersingular. We shall see later some
alternative characterizations of supersingular curves.

2.2 Maps Between Elliptic Curves

Finally, we focus on different type of maps between elliptic curves. As we said, we are
mostly interested in isogenies. We give particular emphasis to isogenies defined from a
curve to itself. These maps will be called endomorphisms. We study how this set of
functions can be equipped with a ring structure, and we characterize the structure of this
ring.

Morphisms

Definition 2.8 (Function field). Let K be a field and C/K a projective curve defined by
f(x, y, z) = 0, where f ∈ K[x, y, z] is irreducible1 in K[x, y, z]. The function field of C
consists of rational functions g/h such that the following conditions hold:

• g and h are homogeneous elements of K[x, y, z] of the same degree.

• h does not lie in the ideal (f).

• the functions g1/h1 and g2/h2 are considered equivalent whenever g1h2−g2h1 ∈ (f).

The function field of C is denoted K(C), which should not to be confused with C(K),
the set of K-rational points on C. The fact that f is irreducible and K[x, y, z] is a unique
factorization domain (so every irreducible element is prime) makes it clear that K(C) is, in
fact, a field. The field K(C) is defined analogously, with g, h ∈ K[x, y, z]. Alternatively, if
C is defined by an affine equation f(x, y) = 0, one can define K(C) as the fraction field of
the ring K[x, y]/(f); in this case the degree of the function r = g/h is max{deg g,deg h}.
We can now define a rational map.

Definition 2.9 (Rational map). Let K be a field and let C1, C2 be projective curves
defined over K. A rational map ϕ : C1(K) → C2(K) is a map of the form (ϕx : ϕy : ϕz),
with ϕx, ϕy, ϕz ∈ K(C1), such that for every point P ∈ C1(K) where ϕx, ϕy and ϕz are all
defined, the point (ϕx(P ) : ϕy(P ) : ϕz(P )) lies in C2(K).

What exactly does it mean for a map, for example ϕx, to be defined at a point? The
concept is clear when we consider functions in a space like K[x], but we are now working
in a quotient space. We observe in fact that ϕ = (ϕx : ϕy : ϕz) is defined only up to scalar
equivalence: for any λ ∈ K the triple (λϕx : λϕy : λϕz) defines exactly the same rational
map ϕ. There may be points P ∈ C1(K) where one of ϕx, ϕy, or ϕz is not defined, but
in this case it may still be possible to evaluate the map ϕ at P after re-scaling ϕ by an
element of K(C).

1It can not be factored into the product of two non-constant polynomials with coefficients in K.
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Definition 2.10 (Regularity at P ). In the notation of the previous definition, we say that
ϕ : C1(K)→ C2(K) is defined (or regular) at a point P ∈ C1(K) if there exists a function
g ∈ K(C1) such that gϕx, gϕy, gϕz are all defined at P and at least one is nonzero at P .
We use gϕ to denote the map (gϕx : gϕy : gϕz).

There may be many choices of representative for the equivalence class of ϕx, and only
some of them may be defined at P , as the following example shows.

Example 2.11. Let K be a field of characteristic not equal to 2. Let C be the elliptic
curve defined by the algebraic set V (y2−x(x−1)(x+1)) ⊆ A2(K). Consider the functions

f1 :=
x(x− 1)

y
and f2 :=

y

x+ 1

We can check that f1 is equivalent to f2 . Note that f1 is not defined at (0, 0), (1, 0) or
(−1, 0) while f2 is defined at (0, 0) and (1, 0) but not at (−1, 0). The equivalence class of
f1 is therefore regular at (0, 0) and (1, 0).

Definition 2.12 (Morphism). A rational map that is defined everywhere is called a mor-
phism.

For elliptic curves, distinguishing rational maps from morphisms is unnecessary: every
rational map between elliptic curves is a morphism. More generally, we have the following.

Theorem 2.13. If C1 is a smooth projective curve then every rational map from C1 to a
projective curve C2 is a morphism.

Proof. See [85, II, Prop. 2.1].

Remark 2.14. We observe that in general a morphism between elliptic curves does not
respect the group structure of these curves: suppose E an elliptic curve over a field K,
and take Q ∈ E(K). We define the translation map

τQ :E(K) E(K)

P P +Q

Clearly, τQ is a rational map that is defined everywhere on E and so it is a morphism.
However, this map does not respect the group structure of its domain and co-domain, in
fact, for example, O 7→ Q.

Isogenies

Elliptic curves have both an algebraic structure, as an abelian group, and a geometric
structure, as an algebraic curve. We now introduce isogenies, which are maps that respect
both the algebraic and the geometric structure of these curves.

Definition 2.15 (Isogeny). Let K be a field, and let E, E′ be elliptic curves defined over
K. An isogeny is a morphism ϕ : E(K) → E′(K) such that ϕ(OE) = OE′ . We call the
zero isogeny the constant map ϕ : E(K)→ E′(K) given by ϕ(P ) = OE′ for all P ∈ E(K).

Unless otherwise stated, we assume that the isogeny ϕ is itself defined over K (meaning
that it can be represented by a rational map whose coefficients lie in K). Isogenies can
be characterized in different ways, all of which are equivalent. We have defined them in
the way that will be more natural to use later, but we also list other definitions that will
come in handy in other situations.
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Theorem 2.16. Let K be a field, and let E,E′ be two elliptic curves defined over K. Let
ϕ : E(K)→ E′(K) be a map between them. The following are equivalent:

• ϕ is a non-constant isogeny.

• ϕ is a surjective group morphism.

• ϕ is a group morphism with finite kernel.

Proof. See [85, III].

Two curves are called isogenous if there exists an isogeny between them. We shall see later
that this is an equivalence relation. We now look more in detail at isogenies of elliptic
curves. We start with some basic definitions.

Definition 2.17 (Degree, separability). Let K be a field, and let ϕ : E(K)→ E′(K) be an
isogeny defined over K. Let K(E),K(E′) be the function fields of E,E′. By composing ϕ
with the functions of K(E′), we obtain a sub-field of K(E) that we denote by ϕ∗(K(E′)).

1. The degree of ϕ is defined as degϕ = [K(E) : ϕ∗(K(E′))].

2. ϕ is said to be separable, inseparable, or purely inseparable if the extension of function
fields is respectively separable, inseparable or purely inseparable.

Proposition 2.18. In the same notation as above

1. deg ϕ is always finite.

2. If ϕ is separable, then degϕ = | kerϕ|.

3. If ϕ is purely inseparable, then degϕ is a power of the characteristic of K.

4. Any isogeny can be decomposed as a product of a separable and a purely inseparable
isogeny.

Proof. See [85, II].

In practice, most of the time we will be considering separable isogenies, and we can take
degϕ = | kerϕ| as the definition of the degree. Notice that in this case degϕ is the size of
any fiber2 of ϕ.

Example 2.19. Consider the map ϕ from E : y2 = x3 +x to E′ : y2 = x3− 4x defined by

ϕ(x, y) =

(
x2 + 1

x
, y
x2 − 1

x2

)
,

ϕ(0, 0) = ϕ(OE) = OE′ .

(2.2)

This is a separable isogeny between curves defined over Q. It has degree 2, and its kernel
is generated by the point (0, 0). Plotting the isogeny (2.2) over R would be cumbersome,
however, since the curves are defined by integer coefficients, we may reduce the equations
modulo a prime p, then the isogeny descends to an isogeny of curves over Fp. Figure 2.5
plots the action of the isogeny after reduction modulo 11.

2That is, the preimage of any element of the codomain.
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E : y2 = x3 + x
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E′ : y2 = x3 − 4x
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Figure 2.5: The isogeny (x, y) 7→
(
(x2 + 1)/x, y(x2 − 1)/x2

)
, as a map between curves

defined over F11.

A dashed arrow indicates that a point of the left curve is sent onto a point on the right
curve; the action on the point in (0, 0), going to the point at infinity, is not shown. We
observe a symmetry with respect to the x-axis, a consequence of the fact that ϕ is a group
morphism. By looking closer, we may also notice that collinear points are sent to col-
linear points, otherwise said, opposite points are sent to opposite points, which is clearly
a necessity for a group morphism.

It is evident that the isogeny is 2-to-1, however we are unable to see all fibers over Fp,
because the isogeny is only surjective over the algebraic closure. This is not dissimilar
from the way power-by-n maps act on the multiplicative group K∗ of a field K: the map
x 7→ x2, for example, is a 2-to-1 (algebraic) group morphism on F∗11, and those elements
that have no pre-image, the non-squares, will have exactly two square roots in F112 , and
so on.

The most unique property of separable isogenies is that they are entirely determined by
their kernel.

Proposition 2.20. Let K be a field, and let E be an elliptic curve defined over K. Let
G be a finite subgroup of E. There is a curve E′, and a separable isogeny ϕ, such that
kerϕ = G and ϕ : E(K) → E′(K). Furthermore, E′ and ϕ are unique up to composition
with an isomorphism.

Proof. See [85, III, Prop. 4.12].

That is, for any finite subgroup G ⊆ E we have an exact sequence3 of algebraic groups

0→ G→ E
ϕ→ E′ → 0.

Uniqueness up to isomorphisms justifies the notation E/G for the isomorphism class of the
image curve E′. Conversely, since for Prop. 2.16 any non-constant isogeny of elliptic curves
necessarily has finite kernel, we have a bijection between the finite subgroups of a curve

3An exact sequence is a sequence of groups and group homomorphisms where the image of each
homomorphism is equal to the kernel of the next.
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E and the isogenies with domain E up to isomorphisms. The computational counterpart
to the kernel-isogeny correspondence is given by Vélu’s much celebrated formulæ.

Proposition 2.21. Let K be a field, and let E : y2 = x3+ax+b be an elliptic curve defined
over K. Let G ⊆ E(K̄) be a finite subgroup. The separable isogeny ϕ : E(K) → E/G(K),
with kernel G, can be written as

ϕ(P ) =

x(P ) +
∑

Q∈G\{O}

(
x(P +Q)− x(Q)

)
, y(P ) +

∑
Q∈G\{O}

(
y(P +Q)− y(Q)

) ;

and the curve E/G has equation y2 = x3 + a′x+ b′, where

a′ = a− 5
∑

Q∈G\{O}

(3x(Q)2 + a),

b′ = b− 7
∑

Q∈G\{O}

(5x(Q)3 + 3ax(Q) + 2b).

Proof. See [93].

In other words, on input (the curve constants defining) E and the points in G, these
formulæ output the constants defining E/G and the explicit maps for ϕ, i.e. the maps
that move any points on E (except those in the kernel G) to their corresponding image
on E/G. We refer to [20, Pag. 6-7] for some basic application cases. This correspondence
between kernels and isogenies is rich in consequences: the following useful facts are fairly
straightforward.

Corollary 2.22. Any isogeny of elliptic curves can be decomposed as a product of prime
degree isogenies.

Corollary 2.23. Let E be defined over an algebraically closed field K, let l be a prime
different from the characteristic of K, then there are exactly l+1 isogenies of degree l with
domain E, up to isomorphism.

In particular, the last result follows immediately from that relation E[l] ∼= Zl × Zl, which
has exactly l+1 subgroups of order l, and they are all such subgroups. Slightly more work
is required to prove the following, fundamental, theorem.

Theorem 2.24 (Dual isogeny theorem). Let ϕ : E(K) → E′(K) be an isogeny of degree
m. There is a unique isogeny ϕ̂ : E′ → E such that

ϕ̂ ◦ ϕ = [m]E , ϕ ◦ ϕ̂ = [m]E′ .

ϕ̂ is called the dual isogeny of ϕ; it has the following properties:

1. ϕ̂ has degree m.

2. ϕ̂ is defined over K if and only if ϕ is.

3. ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂ for any isogeny ψ : E′ → E′′.

4. ψ̂ + ϕ = ψ̂ + ϕ̂ for any isogeny ψ : E → E′.

5. degϕ = deg ϕ̂.

6. ˆ̂ϕ = ϕ.

Proof. See [85, III.6].

Note that being isogenous is an equivalence relation: reflexivity and transitivity are obvi-
ous, while symmetry is guaranteed by the dual isogeny theorem.
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Isomorphisms

Two projective curves C1 and C2 are isomorphic if they are related by an invertible mor-
phism ϕ; this means that there is a morphism ϕ−1 such that ϕ−1 ◦ ϕ and ϕ ◦ ϕ−1 are the
identity maps on C1(K) and C2(K), respectively. If we admit the same definition also for
elliptic curves, we would have, for example, that the Q-translation morphism τQ : E → E
described by Remark 2.14 would have as inverse τ−Q and would therefore be an isomor-
phism. We would like these maps, which do not preserve the group structure, not to be
said to be isomorphisms. For elliptic curves we have a stronger notion of isomorphism,
since we also require the corresponding abelian groups to be isomorphic through ϕ; this
means that the identity element must be preserved.

Definition 2.25 (Isomorphism). Let K be a field, and let (E,OE) and (E′, OE′) be elliptic
curves over K. An isomorphism of elliptic curves ϕ : E(K) → E′(K) is an isomorphism
over K of algebraic varieties such that ϕ(OE) = OE′ . Equivalently, an isomorphism of
elliptic curves is an invertible isogeny. If there is an isomorphism from E to E′ then we
write E ∼= E′.

Isomorphism classes are traditionally encoded by an invariant, whose origins can be traced
back to complex analysis.

Proposition 2.26 (j-invariant). Let K be a field, and let E : y2 = x3 + ax + b be an
elliptic curve over K. Define the j-invariant of E as

j(E) = 1728
4a3

4a3 + 27b2
.

Two curves are isomorphic over the algebraic closure K if and only if they have the same
j-invariant.

Proof. See [85, III, Prop. 1.4].

Definition 2.27 (Automorphism). Let K be a field. An automorphism of an elliptic curve
E/K is an isomorphism from E to itself. The group of all automorphisms of E that are
defined over a field K′ is denoted by AutK′(E).

Endomorphisms

Finally, we note the special case of an isogeny α : E(K) → E(K) from an elliptic curve
to itself; this is called an endomorphism. Since they are algebraic group morphisms, we
can define addition of endomorphisms by (ϕ + ψ)(P ) := ϕ(P ) + ψ(P ), and the resulting
map is still an endomorphism. Thus, by identifying the constant map that sends every
point to the point at infinity with the neutral element, the set of endomorphisms forms
a group. Additionally, we can equip this structure with a binary operation, the compo-
sition of endomorphisms, and verify that it distributes over addition, hence the set of all
endomorphisms from curve E to itself forms a ring, denoted by End(E).

Example 2.28. The prototypical endomorphism is the multiplication-by-m endomor-
phism defined by

[m] : E E

P [m]P

This is obviously a group homomorphism, and it is also a rational map. Its kernel is
exactly the m-th torsion subgroup E[m]. For convenience, in the following we describe
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the multiplication-by-2 and multiplication-by-3 maps. We use an elliptic curve written in
Montgomery form. The arithmetic of the group E(K) obviously readjusts to this definition.
This form of writing is the one that is most frequently used in applications and the CSIDH
protocol is no exception. Consider the multiplication-by-2 or point doubling map on a fixed
Montgomery curve EA : y2 = x3 +Ax2 + x, written as

[2] :EA EA

x (x2−1)2

4x(x2+Ax+1)

In the following we take into account only the x-coordinate of the map, since it is sufficient
to study its behavior and discover which points are sent to O. Observe that the doubling
map has a denominator that creates exceptional points. Viewing the curve equation, we
see that these are the three points with y = 0, namely (0, 0), (α, 0) and (1/α, 0), where
α2 +Aα+ 1 = 0. Indeed, these are the three points of order 2 on EA , and together with
the neutral element, O, they are the entire kernel of the doubling map. This kernel forms
a subgroup of the points in EA , with group structure

ker([2]) ∼= Z2 × Z2

i.e. the 2-torsion is precisely three cyclic subgroups of order 2. Each subgroup has one
of the three points of exact order 2, together with the identity element O (see Figure
2.6). Now consider the multiplication-by-3 or point tripling map on the elliptic curve
EA : y2 = x3 +Ax2 + x, written as

[3] :EA EA

x x(x4−6x2−4Ax3−3)2

(3x4+4Ax3+6x2−1)2

Again, the denominator will give rise to exceptional points to the tripling map. Suppose
its four roots are β, γ, ζ, θ; each of these correspond to x-coordinates of points of order 3
in EA , and this time there are two (non-zero) y-coordinates for each such x. Together
with O, there are then 9 points that are sent to O under [3], and this time we have

ker([3]) ∼= Z3 × Z3

i.e. the 3-torsion is made up by four cyclic subgroups of order 3 (see Figure 2.7).

O(α−1, 0)

(α, 0)

(0, 0)

Figure 2.6: ker([2]) ∼= Z2 × Z2. Three
cyclic subgroups of order 2.

O

(β,−γ) (δ,−ε)

(ζ,−η) (θ,−ι)

(β, γ) (δ, ε)

(ζ, η) (θ, ι)

Figure 2.7: ker([3]) ∼= Z3 × Z3. Four
cyclic subgroups of order 3.
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Example 2.29. Given an elliptic curve E/Fq, we consider the set of points defined by
E(Fq). The Frobenius endomorphism of the extension E(Fq)/E(Fq) is the map

ϕ : E(Fq)→ E(Fq)

defined by {
(x, y) 7−→ (xq, yq)

O 7−→ O

It is immediate to verify that this map is an endomorphism, so that its name is justified.
Furthermore, since this is a morphism, it can be easily shown that it preserves the order
of the points, that is |P | = |ϕ(P ) |.

The Frobenius endomorphism plays a very important role in the theory of elliptic curves,
as we will see in the next section.

Proposition 2.30. Let E and E′ be elliptic curves over K. If n ∈ N \ {0} then [n]
is not the zero isogeny. Furthermore, Hom(E,E′) is a torsion-free Z-module (i.e. if
ϕ ∈ Hom(E,E′) is non-zero then [n] ◦ϕ is non-zero for all n ∈ Z \ {0}), and End(E) has
no zero divisors.

Proof. See [35, Lem. 9.6.11].

We shall now give a complete characterization of the endomorphism ring for any el-
liptic curve. Since End(E) is a torsion-free Z-module, each m ∈ Z defines a different
multiplication-by-m endomorphism, indeed suppose [n] = [m] for some n,m ∈ N. Then
[n] − [m] = [0], so that [n − m] = [0]. Since we have no torsion point on End(E) we
conclude that n−m = 0, i.e. n = m. It follows that the map Z → End(E) sending n to
[n] is injective and we can simply view Z as a sub-ring of End(E). But could End(E) be
larger?

Definition 2.31 (Algebra). Let K be a field. An algebra A over K (equivalently, a K-
algebra A) is a vector space over K equipped with an additional binary bi-linear operation
· : A×A→ A.

Definition 2.32 (Order). Let K be a finitely generated Q-algebra. An order O ⊆ K is
a sub-ring of K that is a finitely generated Z-module, and that contains a Q-basis for K.

Definition 2.33 (Quadratic number field). A quadratic number field is a quadratic ex-
tension K of the rationals; it is called real if there exists an embedding K ⊆ R, imaginary
otherwise.

All such fields can be expressed as Q(
√
d) for some square-free integer d. The field of

Gaussian numbers Q(
√
−1) = Q(i), whose ring of integers is Z[i] (also called the ring of

Gaussian integers), is an example of an imaginary one.

Definition 2.34 (Quaternion algebra). A quaternion algebra is an algebra of the form

K = Q + αQ + βQ + αβQ,

where the generators satisfy the relations

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.
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Now we have all the necessary bases to state and understand the following important
result, which highlights the structure of the endomorphism ring of an elliptic curve.

Theorem 2.35 (Deuring). Let K be a field of characteristic p, and let E be an elliptic
curve defined over K. The ring End(E) is isomorphic to one of the following:

• The integer ring Z.

• An order O in a quadratic imaginary field. In this case we say that E has complex
multiplication by O;

• A maximal order in a quaternion algebra ramified at p and ∞.

Proof. See [85, III, Cor. 9.4] and [57].

We will observe how regular elliptic curves always have complex complication, while su-
persingular ones can have both complex or quaternion multiplication, depending on the
field on which they are defined, and so they are generally not covered by the theory of
complex multiplication. In general we know that the endomorphism ring of an elliptic
curve over Fq is an order in a division algebra A. Depending on the number of Fq-rational
points there are some more precise results about this, as can be seen in the next theorem.

Theorem 2.36. Let p > 3, q = pn and E be a supersingular elliptic curve over Fq with
E(Fq) = q + 1− t where | t |≤ 2

√
q. Then one of the following cases must be true:

1. n is even and t = ±2
√
q.

2. n is even, p 6≡ 1 (mod 3) and t = ±√q.

3. n is even, p 6≡ 1 (mod 4) and t = 0.

4. n is odd and t = 0.

In this situation the corresponding division algebra A is also determined by the cases. Let
πq be the q-th power Frobenius endomorphism. In the first case A is a quaternion algebra
over Q, πq is a rational integer and EndFq(E) is a maximal order in A. In the other three
cases A = Q(πq) is an imaginary quadratic field over Q and EndFq(E) is an order in A
with index [EndFq(E) : A] coprime with p.

Proof. See [96].

In the previous theorem we introduced a new notation, namely EndFq(E). With this
symbol we denote the set of endomorphisms (of a given elliptic curve E) defined over Fq.
In this way we are restricting the more general set End(E), indeed it is possible that a
curve, defined on a given field, has an endomorphism defined on an extension of this one.
The following paragraph shows a particular case of these kind of maps.

Twists

We state the main results regarding twists, an important tool we use throughout this
discussion. Here we assume that Fq is a field of characteristic different from 2.

Definition 2.37 (Twist). Let Fq be a field and E1, E2 be elliptic curves over Fq. Suppose
that they are isomorphic over Fqd for some d > 1, but are not isomorphic over any smaller
extension of Fq. E1 and E2 are said to be degree-d twists of each other (or, simply, a
twist). In particular, a degree-2 twist is called a quadratic twist. Degree-3 and 4 twists
will be called, respectively, cubic and quartic twists.
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Proposition 2.38. Let E : y2 = x3 + Ax + B be an elliptic curve over Fq. E has a
quadratic twist given by

Ed : dy2 = x3 +Ax+B

where d ∈ F∗q is a non-square.

Proof. See [95, II].

Proposition 2.39. Let E and Ed be a quadratic twist one of the other. Then

|E(Fq)|+ |Ed(Fq)| = 2q + 2

Equivalently, tE = −tEd, where tE is the trace4 of the Frobenius endomorphism of the
curve.

Proof. Consider the curve E given by y2 = f(x) and its quadratic d-twist Ed given by
dy2 = f(x). Denote with χ : Fq → {−1, 0, 1} the map defined by

χ(x) =


0 if x = 0

1 if x is a non-zero quadratic residue in Fq
−1 otherwise

We immediately obtain that{
|E(Fq)| = 1 + q − tE
|E(Fq)| = 1 +

∑
x∈Fq(1 + χ(f(x))

The first equation will be discussed in Theorem 2.42. We conclude that

tE = −
∑
x∈Fq

χ(f(x))

tEd = −
∑
x∈Fq

χ(f(x)/d) = −tE

where the last equality is justified by the fact that d is not a quadratic residue over Fq.

Note that a generic curve and its twists always have the same j-invariant. Furthermore:

• If j(E) 6= 0, 1728, then AutFq(E) has order 2 with generator (x, y) 7→ (x,−y).

• If j(E) = 1728, then AutFq(E) is cyclic of order 4 with generator ψ : (x, y) 7→ (−x, iy)
where i ∈ Fq is a primitive fourth root of unity.

• If j(E) = 0, then AutFq(E) is cyclic of order 6 with generator ρ : (x, y) → (νx,−y)
where ν ∈ Fq is a primitive third root of unity.

These results play a key role in the construction of isogeny graphs, as we will see later.

Remark 2.40. Given a finite field and two elliptic curves E,Ed defined on it, for all
x there exist a y such that the point (x, y) belongs to either E or Ed, for some d ∈ F∗q
non-square, indeed consider a finite field Fq, a map f : Fq → Fq such that x 7→ x3 +Ax+B
and an elliptic curve E/Fq := y2 = f(x). Let xP be an element of Fq and consider f(xP ).
If f(xP ) is a quadratic residue in Fq then (xP ,±

√
f(xP )) fits the relation and the result

follows immediately, instead if f(xP ) ∈ F ∗q is a non-square, we define d := f(xP )−1 and
consider the relation f(xP )−1 · y2 = f(x). Observe that (xP , f(xP )) fits the equation,
therefore it as a point of Ed.

4We refer to Theorem 2.41 for a proper definition.
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2.3 Nontrivial Results

Let us see now how to use the morphisms described above to enrich our knowledge about
elliptic curves.

Cardinality of E/Fq
Every endomorphism on an elliptic curve satisfies a quadratic characteristic polynomial
with integer coefficients.

Theorem 2.41. Let K be a field, and let E be an elliptic curve over K. Let ϕ ∈ End(E)
be a non-zero endomorphism, and denote with d the degree of ϕ. Then there is an integer
t such that ϕ2 − tϕ+ d = 0 in End(E). In other words, for all P ∈ E(K),

ϕ(ϕ(P ))− [t]ϕ(P ) + [d]P = O

The integer t is called the trace of the endomorphism.

Proof. See [35, Th. 9.9.3].

In particular, if we are given a finite field Fq, the Frobenius satisfies the aforementioned
relation for all P ∈ E(Fq). In other words, for every point P = (x, y) ∈ E(Fq) the following
equation holds:

(xq
2
, yq

2
) + q(x, y) = t(xq, yq).

The integer t in equation above is naturally called the trace of Frobenius. This object is
strongly related to the cardinality of E/Fq, as the following result points out.

Theorem 2.42. Let E be an elliptic curve over Fq and let P (t) be the characteristic
polynomial of the Frobenius. Then

|E(Fq)| = P (1) = 1 + q − t.

Proof. See [35, Th. 9.10.3].

From the previous result it is clear that, if we were able to limit the value of t, we would
also have a bound for the value |E/Fq|. Hasse’s theorem on elliptic curves, also referred
to as the Hasse bound, exploit exactly this fact and provides an estimate of the number
of points of an elliptic curve over a finite field, bounding the value both from above and
below.

Theorem 2.43 (Hasse). Let E be an elliptic curve over Fq and denote by t the trace of
the q-power Frobenius map. Then

|t| ≤ 2
√
q.

Proof. See [35, Th. 9.10.7].

Since we know that |E(Fq)| = 1+q− t, Hasse’s theorem states that, given an elliptic curve
E/Fq, the number of elements of E(Fq) satisfies the following relation

q + 1− 2
√
q ≤ |E(Fq)| ≤ q + 1 + 2

√
q
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Division Polynomials

A useful tool to investigate the group structure of E(Fq) is a family of multivariate poly-
nomials of Fq[x, y] called the division polynomials of E. They play a central role in the
study of counting points on elliptic curves and are defined recursively as following.

ψ0(x, y) = 0

ψ1(x, y) = 1

ψ2(x, y) = 2y

ψ3(x, y) = 3x4 + 6Ax2 + 12Bx−A2

ψ4(x, y) = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

...

ψ2m+1(x, y) = ψm+2(x, y)ψ3
m(x, y)− ψm−1(x, y)ψ3

m+1(x, y)

ψ2m(x, y) = (2y)−1ψm(x, y)(ψm+2(x, y)ψ2
m−1(x, y)− ψm−2(x, y)ψ2

m+1(x, y))

Observe that a generic division polynomial depends on the parameters A,B that define
the elliptic curve.

The roots of a generic l-th division polynomial are closely related to the l-torsion sub-
group of an elliptic curve, in particular it is possible to show that the roots of ψ2n+1 are
the x coordinates of the points of E[2n + 1] \ {O}, where E[2n + 1] is the (2n + 1)-th
torsion subgroup of E. Similarly, the roots of ψ2n/y are the x-coordinates of the points of
E[2n] \ E[2] .

An application that is very useful for our purposes is the use of these polynomials to
compute the multiplication of a given point P by a scalar n. To compute nP for a large
integer n, it is inefficient to add P to itself repeatedly. Instead of doing this, nP could
be evaluated in another way using the n-th division polynomial: given P ∈ E(Fq) the
following important relation holds.

n(x, y) =: (xn, yn) =

(
x− ψn−1ψn+1

2ψ2
n

,
ψ2n

2ψ4
n

)
. (2.3)

Isogeny Classes

We have previously showed that being isogenous is an equivalence relation, it thus makes
sense to speak of the isogeny class of an elliptic curve. We start with a theorem that links
isogeny classes with the theory we previously described.

Definition 2.44 (Endomorphism algebra). Let E be an elliptic curve over Fq. Denote
with π the Frobenius endomorphism of E and with t its trace. Define then Dπ := t2 − 4q
and observe that Dπ < 0, thanks to Theorem 2.43. Q(

√
Dπ) is called the endomorphism

algebra of E.

It is possible to verify that π ∈ Q(
√
Dπ); so, at least in the ordinary case, remembering

Theorem 2.35, we can affirm that

Z[π] ⊆ End(E) ⊆ Q(
√
Dπ).
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Theorem 2.45 (Serre-Tate). Two elliptic curves E,E′ with complex or quaternion mul-
tiplication are isogenous if and only if their endomorphism algebras are isomorphic.

In layman’s terms, this theorem is telling us that:

• Two curves with complex multiplications by O and O′ respectively are isogenous if
and only if O ⊆ O′ or O′ ⊆ O; or equivalently if and only if O and O′ have the same
field of fractions.

• Any two supersingular curves defined over a field of characteristic p are isogenous,
indeed, thanks to Teorem 2.36, both curves have zero Frobenius trace.

An easy consequence for the finite field case is the following.

Corollary 2.46. Two elliptic curves E,E′ defined over a finite field K are isogenous over
K if and only if |E(K)| = |E′(K)|.

Modular Polynomials

Given an elliptic curve E defined on a finite field Fq, and a subgroup G ⊆ E(Fq), then
there exists an isogeny ϕ : E → E/G. We have shown how this map can be computed
with the formulæ of Vélu, however this is not the only possible way: there is another tool
to compute isogenies, which does not explicitly involve the kernel subgroup or points on
the curve. This more elegant approach involves modular polynomials. It is beyond the
scope of this discussion to present the theory of modular functions and modular curves
therefore we just state the results that are relevant to us (some basic references are [60,
Sections 5.2 and 5.3] and [22, Section 11]).

Let l be an integer with l ≥ 2. The modular polynomial ϕl(x, y) ∈ Z[x, y] has the
following remarkable property: a pair j, j′ ∈ Fq satisfies ϕ(j, j′) = 0 if and only if there are
elliptic curves E,E′ over Fq with j(E) = j and j(E′) = j′ and an isogeny ϕ : E → E′ of
degree l. It follows from the dual isogeny theorem that ϕl(y, x) = ϕl(x, y). Hence, given
an elliptic curve E over Fq, to find the j-invariants of the l-isogenous curves one simply
computes the uni-variate polynomial ϕl(j(E), y) ∈ Fq[y] and then computes its roots in
Fq. An algorithm due to Elkies allows to compute the kernel of the corresponding isogeny
when given E and the j-invariant j′ of the isogenous curve E′.
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Chapter 3

Isogeny Graphs

In this section we explain some aspects of elliptic curves with complex and quaternionic
multiplication. In this way we will provide the theoretical basis to understand isogeny
graphs. For further details we refer to [85], [25] and [24].

3.1 Complex Multiplication

We present one of the most powerful tools for the study of isogeny graphs: the theory
of complex multiplication. This theory concerns all elliptic curves whose endomorphism
ring is an order in an imaginary quadratic field. In particular, we study the set of curves
sharing the same endomorphism ring O, and denote this set with Ell(O). To do this we
introduce a new object, the ideal class group Cl(O). We show that these two sets are in
one-to-one relation, so that

Ell(O)
1:1←→ Cl(O)

and we find out that Cl(O) acts on Ell(O) freely and transitively. We will explore these
concepts later in the chapter. This last result is of fundamental importance for the CSIDH
protocol. Before defining the ideal class group, we still need to recall some basic definitions
from algebraic number theory; for a more detailed treatment, see [61].

Definition 3.1 (Discriminant). Let d be a square free integer, the discriminant of the
quadratic number field Q(

√
d) is d if d ≡ 1 mod 4, and 4d otherwise.

The discriminant is an object that can be defined more generically, and what we have
provided above is a specific definition where the field extension has degree 2. In this case
the discriminant is also called the fundamental discriminant.

Definition 3.2 (Ring of integers). Let K be a number field, an algebraic integer of K is
an element α ∈ K that is root of an irreducible monic polynomial with integer coefficients.
The algebraic integers of K form a ring, called the ring of integers of K. We will denote
this set with OK .

For example, Z[i] is the ring of integers of Q(i). More generally, if we consider a quadratic
field K = Q(

√
−d), the corresponding ring of integers OK is given by

Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[(1 +
√
d)/2] if d ≡ 1 (mod 4)
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By Definition 2.32, an order of a quadratic field K is a sub-ring of K that is a Z-module of
rank 2. The ring of integers OK of K fits the bill: it always has (1,

√
∆) or (1, (1+

√
∆)/2)

as integral basis, i.e., as a set of Z-module generators. Furthermore, it is easy to prove that
any other order is contained in OK ; for this reason we will sometimes call it the maximal
order of K. More precisely, we can prove the following.

Proposition 3.3. Let K be a quadratic number field, and let OK be its ring of integers.
Any order O ⊆ K can be written as O = Z + fOK for an integer f , called the conductor
of O. If ∆K is the discriminant of K, the discriminant of O is f2∆K . If O,O′ are two
orders of discriminants ∆,∆′, then O ⊆ O′ if and only if ∆′|∆.

Proof. See [57, Prop. 21].

It can be shown that the integer f in the previous theorem, that is the conductor of the
order O = Z + fOK , is equal to the index [OK : O], which is necessarily finite.

When K is imaginary quadratic, any order O ⊆ K ⊆ C is a complex lattice1 by defi-
nition. We now define a broader class of lattices.

Definition 3.4 (Fractional ideal). Let O be an order in a number field K. A fractional
ideal of O (equivalently, an O-fractional ideal) is a non-zero subgroup a ⊆ K such that

• xa ⊆ a for all x ∈ O.

• there exists a non-zero x ∈ O such that xa ⊆ O.

If a is generated by a single element, then it is called principal. If a ⊆ O, then it is called
an integral ideal. The norm of an O-integral ideal a ⊆ O is defined as N(a) =| O/a |.

Note that the ideals of O are exactly the fractional ideals contained in O; since we usually
use fractional ideals in this discussion, we will often refer to these objects simply as ideals,
and we will use the name integral ideal for ordinary ones.

Example 3.5. As a basic example of fractional ideal we can take K := Q(
√
−1) and

O := 〈1, 2i〉 over Q. We then define a := { x2i | x ∈ O}. It is immediate to verify that
xa ⊆ a for all x ∈ O and 2i · a ⊆ O, so that the request of Definition 3.4 are satisfied and
a is a fractional ideal.

We define the product of two fractional ideals a, b as

ab := {xy | x ∈ a, y ∈ b}

Definition 3.6 (Invertible fractional ideal). An O-ideal a is invertible if there exists
another ideal a−1 such that aa−1 = a−1a = O.

Invertible ideals form an abelian group, written multiplicatively, under the operation de-
fined above, where O is the neutral element. It is immediate to verify that principal ideals
form a subgroup of it. Furthermore, if O is the maximal order of K, it is possible to prove
that any O-ideal is invertible.

1A discrete subgroup of C that contains an R-basis of C.
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Definition 3.7 (Ideal class group). Let O be an order in a number field K. Let I(O) be
the group of invertible fractional O-ideals, and let P(O) be the group of principal ideals.
The ideal class group of O is the quotient group

Cl(O) = I(O)/P(O).

Its order is called the class number of O, and denoted by h(O). When O is the maximal
order, Cl(O) is also called the class group of K.

It is well known that the class group is a finite abelian group, so that its order is finite.
What is relevant to us is that each element of Cl(O) acts on Ell(O) in a very particular
way, as shown in the following.

Definition 3.8 (a-torsion). Let E be an elliptic curve defined over a finite field Fq. Let
O be the endomorphism ring of E, and let a ⊆ O be an integral invertible ideal of norm
coprime to q. We define the a-torsion subgroup of E as

E[a] = {P ∈ E | α(P ) = 0 for all α ∈ a}.

Given an ideal a ⊆ O as above, it is natural to define the (separable) isogeny ϕa : E → Ea,
where Ea = E/E[a]. The following theorem points out some important results about
the relation between the ideal class group and the set of elliptic curves with complex
multiplication by a fixed order.

Theorem 3.9. Let Fq be a finite field, and let O ⊆ Q(
√
−D) be an order in a quadratic

imaginary field. Denote by Ellq(O) the set of elliptic curves defined over Fq with complex
multiplication by O. Assume that Ellq(O) is non-empty, then the class group Cl(O) acts
freely2 and transitively3 on it; i.e., there is a map

Cl(O)× Ellq(O)→ Ellq(O)

(a, E) 7→ a · E

such that a · (b ·E) = (ab) ·E for all a, b ∈ Cl(O) and E ∈ Ellq(O), and such that for any
E,E′ ∈ Ellq(O) there is a unique a ∈ Cl(O) such that E′ = a · E.

Said otherwise, End(E) ∼= End(Ea) ∼= O, Ea only depends on the class of a in Cl(O), and
the map (a, E) 7→ Ea defines a group action of Cl(O) on the set of elliptic curves with
complex multiplication by O.

Remark 3.10. We observe that Ea is only defined when a ⊆ O, however in Theorem ??
we are using a generic element of Cl(O), which should not being contained in O. This is
not a problem, in fact every class in this set contains an integral invertible ideal: suppose b
to be a generic element of Cl(O), then b is an invertible ideal, and therefore by Definition
3.4 there exists non-zero x ∈ O such that a := xb ⊆ O. Regarding the definition of Cl(O),
it follows that these two objects belong to the same class.

A set that is acted upon freely and transitively by a group G, is also called a principal
homogeneous space or a torsor for G. An immediate consequence of the theorem above is
that that, for any fixed base point E∈Ellq(O), there is a bijection

Cl(O) −→ Ellq(O)

Ideal class of a 7−→ Isomorphism class of a · E.

and so the torsor Ellq(O) has cardinality equal to the class number h(O).

2Namely: if Ell(O) 6= ∅ and if for each pair x, y in Ell(O) there exists a g in Cl(O) s.t. g · x = y.
3Namely: if g ∈ Cl(O) and there exists an x in Ell(O) with g · x = x, then g is the identity.
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3.2 Quaternionic Multiplication

In this discussion we always deal with elliptic curves defined over Fp or Fp2 : it is a

well known result in literature that every supersingular elliptic curve defined over Fp is
isomorphic to one defined over Fp2 . When E is defined over Fp we fall in case (4) of Prop.
2.36, and EndFp(E), the ring of Fp-rational endomorphisms, is isomorphic to an order in
Q(
√
−p). When E is defined over Fp2 , however, t ∈ {0,±p,±2p}. The cases t ∈ {0,±p}

only happen for a very limited number of curves with j-invariant 0 or 1728; we are thus
mostly interested in case (1) of Prop. 2.36, where t = ±2p, i.e., π = ±p. In this case
the full endomorphism ring End(E) (i.e., not restricted to Fp-rational endomorphisms) is
isomorphic to a maximal order the quaternion algebra Bp,∞ ramified at p and at infinity.

Example 3.11. The elliptic curve y2 = x3 + x has supersingular reduction at all primes
p = 3 mod 4. Its ring of Fp-rational endomorphisms is generated by π =

√
−p, and it is

not maximal in Q(
√
−p). The automorphism ι : (x, y) 7→ (−x, iy) is only defined over Fp2 ,

and does not commute with π. The full endomorphism ring is isomorphic to the order
generated by π and ι inside the quaternion algebra Bp,∞.

Let us first consider curves over Fp2 . The following discussion is not necessary for CSIDH
to work, in fact the protocol just make use of supersingular curves for which the endo-
morphism ring is isomorphic to an order in an imaginary quadratic field. We will however
briefly explain the theory of quaternionic multiplication for completeness.

Given a maximal order O in a quaternion algebra, we would like to study the set of
supersingular elliptic curves Ell(O). As before, we introduce the (left) class set Cl(O),
and we show that the two sets are in one-to-one relation:

Ell(O)
1:1←→ Cl(O)

Like the CM case, isogenies are in correspondence with (left) ideals of O. More precisely,
let a ⊆ Bp,∞ a lattice, the left order of a is the ring O(a) = {x ∈ Bp,∞ | xa ⊆ a}. Two
lattices a, b are said to be right isomorphic if a = bx for some x ∈ Bp,∞. If O ⊆ Bp,∞ is
an order, a is called a left ideal of O if O ⊆ O(a); the left class set Cl(O) is the set of
right ideal classes of left ideals of O.

The cardinality |Cl(O)| only depends on the quaternion algebra, and is called the class
number of Bp,∞. Analogous definitions can be given by swapping left and right; we refer
to [94, Chapter 42] for more properties and definitions.

Theorem 3.12. Let Bp,∞ be the quaternion algebra ramified at p and infinity, and con-
sider a maximal order O ⊆ Bp,∞. Let E0/Fp2 be a supersingular elliptic curve with
End(E0) ∼= O.

1. The number of isomorphism classes of supersingular elliptic curves is equal to the
class number of Bp,∞.

2. There is a one-to-one correspondence a 7→ a · E0 between Cl(O) and the set of iso-
morphism classes of supersingular elliptic curves, such that End(a·E0) is isomorphic
to the right order of a.
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3.3 Graphs

In this section we set out some elementary results regarding graph theory, with particular
emphasis to those properties that are useful in cryptography. In particular we focus on
those graphs that have good pseudo-randomness properties, i.e. those graphs for which a
sufficiently large random walk ends on each vertex with probability close to the uniform.
We describe these properties formally, and see how to deterministically construct such
graphs. The aim of this exposition is to provide the basis to fully understand the deeper
theory behind isogeny graphs. We first recall some basic concepts. In the following, given
the considerable amount of notions and definitions necessary for the discussion, we prefer
a less formal approach. We refer to [24] for further details.

Definition 3.13 (Graph). A directed (un-directed) graph is a pair G = (V,E), where V is
a set, whose elements are called vertices, and E ⊆ V × V is a set of ordered (un-ordered)
pairs, whose elements are called edges, so that two vertices v and w are said to be connected
by an edge if {v, w} ∈ E.

The vertices v and w of an edge {v, w} are called the endpoints of the edge, and the edge
is said to join v and w. Clearly a vertex may not belong to any edge. These graphs are
sometimes called simple graphs for distinguishing them from multi graphs.

Definition 3.14 (Multi-graph). A directed (undirected) multi-graph is a pair G = (V,E),
where V is a set, whose elements are called vertices, and E ⊆ V × V is a multi-set of
ordered (un-ordered) pairs, whose elements are called edges.

A multi-graph is a generalization that allows multiple edges to have the same pair of
endpoints. In this discussion we always deal with multi-graphs, therefore, to avoid weighing
down the notation, we simply call them graphs. Note that with these definitions graphs are
allowed to contain loops, which are edges that join a vertex to itself. Figure 3.1 provides
an example of such a graph.

Figure 3.1: An undirected multi-graph.

As we always deal with undirected graph, unless otherwise stated, a graph will always be
considered undirected. A path between two vertices v, v′ is a sequence of vertices

v → v1 → · · · → v′

such that each vertex is connected to the next one by an edge. The distance between
two vertices is the length of the shortest path between them; if there is no such path,
the vertices are said to be at infinite distance. Given a connected graph G = (V,E), the
diameter of this G is the largest of all distances between its vertices.

Definition 3.15 (Connected graph). A graph is called connected if any two vertices do
have a path connecting them; it is called disconnected otherwise.
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Given a graph, the neighbours of a vertex v are the vertices of V connected to it by an
edge. The number of neighbours defines the degree of v.

Definition 3.16 (Regular graph). A regular graph is a graph in which each vertex has
the same number of neighbours, i.e. every vertex has the same degree. A regular graph
with vertices of degree k is called a k-regular graph or regular graph of degree k.

Definition 3.17 (Adjacency matrix). Given a graph G = (V,E) we define the adjacency
matrix A associated to G as the matrix Ai,j := |{(i, j) ∈ E}| , that is, as the number of
edges that connect i to j.

For a simple graph we always have Ai,j ∈ {0, 1}. Differently for a multi-graph it could
happen that Ai,j > 1. Since our graphs G are undirected, the adjacency matrix will always
be symmetric, thus it will always have n real eigenvalues (called the eigenvalues of G)

λ1 ≥ · · · ≥ λn.

We can immediately bound the eigenvalues of G.

Proposition 3.18. Let G be a k-regular graph. Then its largest and smallest eigenvalues
λ1, λn satisfy

k = λ1 ≥ λn ≥ −k.

Proof. See [91, Lem. 2]

Because of this equality, λ1 is called the trivial eigenvalue. An expander graph is a k-
regular graph such that its non-trivial eigenvalues are bounded away, in absolute value,
in a way we’ll see soon. The random-like properties of graphs are typically expressed in
terms of expansion. We recall here some basic facts about expanders; for an in depth
review, see [42], [31].

Definition 3.19 (Expander graph). Let ε > 0 and k ≥ 1. A k-regular graph is called a
(one-sided) ε-expander if

λ2 ≤ (1− ε)k

and a two-sided ε-expander if it also satisfies

λn ≥ −(1− ε)k = (1− ε)(−k).

A sequence Gi = (Vi, Ei) of k-regular graphs with |Vi|→∞ is said to be a one-sided (resp.
two-sided) expander family if there is an ε > 0 such that Gi is a one-sided (resp. two-sided)
ε-expander for all sufficiently large i.

Theorem 3.20. For any infinite family of k-regular graphs on n nodes, denoted {Gn}n,
we have

λ(Gn) := max(|λ2|, |λn|) ≥ 2
√
k − 1− o(1)

where the last term is some number that goes to zero as n gets large.

Definition 3.21 (Ramanujan graph). A k-regular graph such that |λj | ≤ 2
√
k − 1 for

any λj except λ1 is called a Ramanujan graph.
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Ramanujan graphs are not only expander graphs, they are essentially the best possible
expander graphs: the constant 2

√
k − 1 in the definition of Ramanujan graphs is the best

possible constant for each k and for large graphs: thanks to Theorem 3.20, for every k and
ε > 0, there exists a natural number n such that all k-regular graphs G with at least n
vertices satisfy λ(G) > 2

√
k − 1− ε. This type of graphs naturally arise in isogeny graphs

of supersingular elliptic curves4.

Edge expansion quantifies how well subsets of vertices are connected to the whole graph,
or, said otherwise, how far the graph is from being disconnected.

Definition 3.22 (Edge expansion). Let F ⊆ V be a subset of the vertices of G. The
boundary of F , denoted by ∂F ⊆ E, is the subset of the edges of G that go from F to
V \ F . The edge expansion ratio of G, denoted by h(G) is the quantity

h(G) = min
F⊆V,
|F |≤|V/2|

|∂F |
|F |

.

Note that h(G) = 0 if and only if G is disconnected. Edge expansion is strongly tied to
expander graphs, as the following theorem shows.

Theorem 3.23 (Discrete Cheeger inequality). Let G be a k-regular one-sided ε-expander,
then

ε

2
k ≤ h(G) ≤

√
2εk.

Qualitatively, we can describe these graphs as having short diameter and rapidly mixing
walks. Another reason for which these graphs are important in cryptography is that finding
paths in these graphs, i.e. routing, is hard: there are no known subexponential algorithms
to solve this problem, either classically or on a quantum computer.

Proposition 3.24. Let G be a k-regular one sided ε-expander graph. For any vertex v
and any radius r > 0, let B(v, r) be the ball of vertices at distance at most r from v.
Then, there is a constant c > 0, depending only on k and ε, such that

|B(v, r)| ≥ (1 + c)r

In particular, this shows that the diameter of an expander is bounded by O(log n), where
n := |G|, indeed if we consider |B(v, log n)|, the number of nodes that can be reached from
v in log n steps, we have that this number is greater than (1 + c)logn ∈ O(n), so we are
able to reach each node of G. A random walk of length i is a path v1 → · · · → vi, defined
by the random process that selects vi uniformly at random among the neighbors of vi−1.
Loosely speaking, the next proposition says that, in an expander graph, random walks of
length close to its diameter terminate on any vertex with probability close to uniform.

Proposition 3.25 (Mixing theorem). Let G = (V,E) be a k-regular two-sided ε-expander
graph. Let F ⊆ V be any subset of the vertices of G, and let v be any vertex in V . Then
a random walk of length at least

log(|F |1/2/(2|V |))
log(1− ε)

starting from v will land in F with probability at least |F |/(2|V |).
4They play a fundamental role in the SIDH protocol.
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Proof. See [50].

The walk length in the mixing theorem is also called the mixing length of the expander
graph. Random regular graphs typically make good expanders, but only a handful of
deterministic constructions are known, most of them based on Cayley and Schreirer graphs
[64, 31, 42], which we are going to define in the following.

Definition 3.26 (Cayley graph). Let G be a group and S ⊆ G be a symmetric subset, i.e.
not containing 1 and closed under inversion. The Cayley graph of (G,S) is the undirected
graph whose vertices are the elements of G, and such that g, g′ ∈ G are connected by an
edge if and only if there exists s ∈ S such that g′ = sg.

An immediate generalization of Cayley graphs are Schreier graphs, where the standard
multiplication between elements of the same group is replaced by the action of a group G
on a given set X, as the following definition shows.

Definition 3.27 (Schreirer graph). Let G be a group acting freely on a set X, in the
sense that there is a map

G×X → X

(σ, x) 7→ σ · x

such that σ · x = x if and only if σ = 1, and σ · (τ · x) = (στ) · x, for all σ, τ ∈ G and
x ∈ X. Let S ⊆ G be a symmetric subset. The Schreier graph of (S,X) is the graph
whose vertices are the elements of X, and such that x, x′ ∈ X are connected by an edge if
and only if x′ = σ · x for some σ ∈ S.

Because of the constraints on the group action and the set S, Schreier graphs are undirected
and regular, and they usually make good expanders. Note that Cayley graphs are the
Schreier graphs of the (left) action of a group on itself.

g2

g4
g8

g3

g6

g12

g11

g9

g5
g10

g7

g1

x 7→ x2

x 7→ x3

x 7→ x5

Figure 3.2: Schreier graph of ({2, 3, 5, 2−1, 3−1, 5−1},Z∗13).

Example 3.28. As an example, take as a set a cyclic group G of order n, then the group
(Z/nZ)∗ acts naturally on G by the law σ · g = gσ for any g ∈ G and σ ∈ (Z/nZ)∗. This
action is not free on G, but it is so on the subset P of all generators of G; we can thus
build the Schreier graph (S, P ), where S is a symmetric subset that generates (Z/nZ)∗.
An example of such graph for the case n = 13 is shown in Figure 3.2, where the set
S ⊆ (Z/13Z)∗ has been chosen to contain 2, 3, 5 and their inverses.
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3.4 l-Isogeny Graphs

This is a key section: here we combine the theory of elliptic curves and graph theory.
We show how it is possible to construct a graph whose vertices are isomorphism classes
of elliptic curves and whose edges represent set of isogenies defined between these curves.
Later we will restrict these graphs by basically imposing two limitations:

• We limit ourselves to consider as vertices of the graph only the elliptic curves having
as endomorphism ring (an algebraic structure isomorphic to) a fixed order O.

• We consider as edges only the isogenies defined over Fp, the base field of the curve,
where p is a prime. In other words, we will ignore isogenies strictly defined on the
algebraic closure Fp.

In these graphs we observe that some connected components admit a sub-graph isomorphic
to a Cayley graph. We study these components in order to define a cryptographic protocol
above. We proceed in order with the discussion, starting from the basic definitions.

Definition 3.29 (Isogeny graph). Let L be a non-empty set of small primes. Let K be a
field. An isogeny graph G(K, L) is a directed graph where its vertices are K-isomorphism
classes of elliptic curves over K and its edges are equivalence classes of l-isogenies defined
over K between such curves for l ∈ L (two isogenies are equivalent if they have the same
kernel). If we only consider L = {l}, we write G(K, l) and we say that this is an l-isogeny
graph and that two curves are l-isogenous.

Remark 3.30. When working with a finite field Fp, usually vertices are represented by
j-invariants, but this choice is appropriate only if we are considering regular curves: an
ordinary elliptic curve over Fp is never isogenous to its non-trivial quadratic twist since
they have a different number of Fp-rational points, so we never have to care about twists
when considering isogenies between ordinary elliptic curves over Fp. If the curves are
supersingular though, this is not the case. Let p > 3 be a prime; a supersingular elliptic
curve over Fp has p+1 points and so, thanks to Theorem 2.39, all quadratic twists have the
same number of points. Thus the twists are isogenous but lie in different Fp-isomorphism
classes. Therefore it is not very precise to represent the vertices in the supersingular
isogeny graph over Fp with j-invariants, since in this way different isomorphism classes
over Fp would collapse to only one vertex and the picture of in- and outgoing isogenies
would be distorted. If we want to differentiate between twists, we have to store more
information than just the j-invariants of the elliptic curves.

Remark 3.31. A priori an isogeny graph is a directed graph, but given two elliptic
curves E1 and E2 whose j-invariants are not in {0, 1728}, there are exactly as many edges
(E2, E1) as (E1, E2), obtained by taking dual isogenies. Annoyingly, the nodes with j-
invariants 0 and 1728 are more complicated, since these are exactly the curves with extra
automorphisms: an elliptic curve E has fewer incoming than outgoing edges if and only
if either j(E) = 0 and

√
−3 ∈ K, or if j(E) = 1728 and

√
−1 ∈ K. Throughout this

discussion, we will assume for simplicity that
√
−1,
√
−3 /∈ K, so that neither of these

automorphisms are defined over K and we may view the graph as an undirected graph.
In the case of a finite prime field K = Fp this is equivalent to require j = 0 and p ≡ 1
(mod 3) or j = 1728 and p ≡ 1 (mod 4). However we will show that this is not a problem
for the case of supersingular curves define over Fp.
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With these premises, isogeny graphs are usually drawn undirected.

Traditionally, for regular curves we study the graph whose isogenies are defined on the
same field Fq of the curves, while for the supersingular ones we study the graph whose
isogenies are defined on the algebraic closure Fq. We will follow this approach, but since
we are interested in graphs in which curves and isogenies are defined over Fp, we will have
to do some additional work on the supersingular isogeny graph.

Depending on the constraints we put, we get graphs with different structures. The most
important ones will be isogeny volcanoes, Cayley graphs, and supersingular graphs. The
constrains that are usually imposed are the definition field of the curve (C,Fp,Fp2 or Fp),
the definition field of isogenies (Fp or Fp2), in the case we are working in a finite field, or the
degree l of the isogenies to which we want to restrict. We focus our attention on isogenies
of fixed degree l, distinguishing the case in which the endomorphism ring is isomorphic to
Z, an order in an imaginary quadratic field, or an order in a quaternion algebra. For each
case we will answer the most natural questions about it: given a curve E we will show
how many isogenies of degree l admit E as a domain, what is the global structure of the
graph, how many are the connected components, and if they share the same structure.

3.4.1 End(E) ∼= Z

The first case we deal with is those of curves with endomorphism ring isomorphic to Z.
Let us start from the local structure: given an elliptic curve E and a prime l, how many
isogenies of degree l do have E as domain? Thanks to Proposition 2.20, we know this is
equivalent to ask how many subgroups of order l the curve has; but then we immediately
know there are exactly l+1 isogenies whenever l 6= p. For example, let us consider a curve
E/C such that End(E) = Z. Its l-isogeny graph, that is the connected component of
the graph of l-isogenies containing E, is (l+ 1)-regular, and cannot have loops, otherwise
that would provide a non-trivial endomorphism of E of degree a power of l. Hence, the
l-isogeny graph of E is an infinite (l + 1)-tree, as pictured in Figure 3.3.

Figure 3.3: Infinite 2-isogeny graph of elliptic curves without complex multiplication.
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3.4.2 End(E) ∼= O ⊆ Q(
√
−d)

Here we focus on an isogeny graph of a given elliptic curve E/K with complex multiplica-
tion, that is a curve whose endomorphism ring is isomorphic to an order O in an imaginary
quadratic field Q(

√
−d). Exactly as in the complex case, and for the same reason, there

are l + 1 isogenies defined over K with domain E, whenever the characteristic of the field
does not divide l. Clearly we are interested in elliptic curves with complex multiplication
which are defined on a finite field Fq. When we think about curves over finite fields, some
isogenies may only be defined on the algebraic closure Fq, and we would like to restrict
our graphs to those isogenies that are defined over Fq. The Frobenius morphism is a very
useful tool in this search. Formally, the following result holds:

Proposition 3.32. Let ϕ : E(Fq) → E/G(Fq) be an isogeny. Then ϕ is Fq-rational if
and only if π(G) = G.

Since we are considering separable isogenies of degree l, also the kernel of the map, that
is the subgroup G will have order l, from which it immediately follows G ⊆ E[l]. In order
to computer for how many subgroups G ⊆ E[l] of order l we have π(G) = G, we restrict
the domain of the Frobenius to E[l]. Since E[l] ∼= Zl×Zl we can imagine π as an element
of GL2(Fl), up to conjugation. Since all subgroups of E[l] are cyclic, in particular our
subgroups G will be of the form G = 〈v〉, for some v ∈ E[l] of order l. Note that every
non zero element of E[l] has order l. So let us look for how many elements v ∈ E[l] we
have π(v) = λ · v. In this way G := 〈v〉 defines an isogeny over Fq with domain E. To
answer this question it is sufficient to diagonalize the Frobenius matrix. We thus are in
one of the following four cases:

• π is not diagonalizable in Fl, then E has no l-isogenies.

• π has one eigenvalue of (geometric) multiplicity one, i.e., it is conjugate to a non-
diagonal matrix

(
λ ∗
0 λ

)
; then E has one l-isogeny.

• π has one eigenvalue of multiplicity two, i.e., it acts like a scalar matrix
(
λ 0
0 λ

)
; then

E has l + 1 isogenies of degree l.

• π has two distinct eigenvalues, i.e., it is conjugate to a diagonal matrix
(
λ 0
0 µ

)
with

λ 6= µ; then E has two l-isogenies.

Naturally, the number of eigenvalues of π depends on the factorization of its characteristic
polynomial x2− tx+q over Fl, or equivalently on whether ∆π = t2−4q is a square modulo
l. We can sum up the results found in the following proposition.

Proposition 3.33. Let E : y2 = x3 + ax+ b be an elliptic curve defined over a finite field
Fq of characteristic p, and let l 6= p be a prime.

1. There are l+1 distinct isogenies of degree l with domain E defined over the algebraic
closure Fq.

2. There are 0, 1, 2 or l + 1 isogenies of degree l with domain E defined over Fq.

In this way we manage to answer the first question we asked ourselves, namely how many
isogenies defined over Fq do have E as a domain. But what about the global structure?
Any curve E/Fq can be seen as the reduction modulo p of some curve E/C; thus it must
inherit the connectivity structure of the isogeny graph of E/C. Let E/Fq have complex
multiplication by an order O in a number field K = Q(π). Write OK for the maximal
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order of K, then we know that Z[π] ⊆ O ⊆ OK . We have already seen that two elliptic
curves are isogenous if and only if they have the same endomorphism algebra K; Kohel
refined this as follows.

Proposition 3.34 (Horizontal and vertical isogenies). Let ϕ : E(K) → E′(K) be an
isogeny of prime degree l, and let O,O′ be the orders corresponding to E,E′. Then, either
O ⊆ O′ or O′ ⊆ O, and one of the following is true:

• O = O′, in this case ϕ is said to be horizontal.

• [O′ : O] = l, in this case ϕ is said to be ascending.

• [O : O′] = l, in this case ϕ is said to be descending.

Proof. See [57, Prop. 21].

This result introduces the concept of depth in isogeny graphs of regular curves. To for-
malize it we introduce the following definition.

Definition 3.35 (p-adic valuation). Let p be a prime number, the p-adic order or p-adic
valuation of a non-zero integer n is the highest exponent v such that pv divides n. The
p-adic valuation of 0 is defined to be infinity. The p-adic valuation is commonly denoted
with vp(n).

For a fixed prime l, Kohel defines a curve E to be at the surface if vl([OK : End(E)]) = 0.
E is said to be at depth d if vl([OK : End(E)]) = d. The maximal depth is defined as
dmax = vl([OK : Z[π]]). Curves at depth dmax are said to be at the floor (of rationality),
and dmax is called the height of the graph of E. In this view an l-isogeny is said to be
horizontal if it goes to a curve at the same depth, descending if it goes to a curve at
greater depth, ascending if it goes to a curve at lesser depth.

Observe that vertical isogenies can only exist for primes that divide the conductor of
Z[π], so the horizontal case is the generic one. But how many horizontal and vertical l-
isogenies does a given curve have? To answer this question, let us first recall the Legendre
symbol, with which we will be able to state the proposition that answers our question.

Definition 3.36 (Legendre symbol). Let p be an odd prime number and a be an integer.
We say that a is a quadratic residue modulo p if it is congruent to a perfect square modulo
p, otherwise we say that it is a non-quadratic residue modulo p. The Legendre symbol is
a function of a and p defined as

(
a

p

)
=


1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p),

−1 if a is a non-quadratic residue modulo p,

0 if a ≡ 0 (mod p).

Proposition 3.37. Let E be an elliptic curve over a finite field K. Let O ⊆ OK be
its endomorphism ring, f its conductor, ∆K the discriminant of OK , π the Frobenius
endomorphism, fπ the conductor of Z[π]. Let l be a prime different from the characteristic
of K, then the types of degree l isogenies with domain E are as follows:

• If l|f and l - (fπ/f), there is one ascending isogeny.

• If l|f and l|(fπ/f), there is one ascending isogeny and l descending ones.
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• If l - f and l - (fπ/f), there are 1 +
(

∆K
l

)
horizontal isogenies, where

(
∆K
l

)
repre-

sents the Legendre symbol.

• If l - f and l|(fπ/f) there are 1+
(

∆K
l

)
horizontal isogenies and l−

(
∆K
l

)
descending

isogenies.

Proof. See [57, Prop. 21].

We refer to the following table for a summary of the result obtained. The third column
describes the types of isogenies which can occur: horizontal, ascending and descending,
respectively.

→ ↑ ↓

vl(∆π/∆K) = 0 l - [OK : O]] ∧ l - [O : Z[π]] 1 +
(

∆K
l

)
l - [OK : O]] ∧ l | [O : Z[π]] 1 +

(
∆K
l

)
l −
(

∆K
l

)
vl(∆π/∆K) > 1 l | [OK : O]] ∧ l | [O : Z[π]] 1 l

l | [OK : O]] ∧ l - [O : Z[π]] 1

Table 3.1: Number and types of l-isogenies

The table above summarizes Proposition 3.37 in much easier terms and clarifies once and
for all the structure of the isogeny graph associated with an elliptic curve with complex
multiplication. To explain that, let us distinguish the cases:

• If vl(∆π/∆K) = 0 then, since ∆π = f2
π∆K , we have

vl(∆π/∆K) = 0⇐⇒ vl(f
2
π∆K/∆K) = 0

⇐⇒ vl(f
2
π) = 0

⇐⇒ f2
π = 1

⇐⇒ Z[π] = OK

Given a quadratic field K, we have already shown that Z[π] ⊆ End(E) ⊆ OK , so in
this case every elliptic curve with End(E) ⊆ OK is forced to have End(E) ∼= OK ,
and therefore there will be only horizontal isogenies.

• If vl(∆π/∆K) > 1, or, equivalently, if Z[π] ( OK , there will also be vertical isogenies,
in particular if E is not at the floor, there are l + 1 isogenies of degree l from E, in
total. If E is at the floor, there are no descending l-isogenies from E. If E is at the

surface, then there are
(

∆K
l

)
+ 1 horizontal l-isogenies from E (and no ascending

l-isogenies). If E is not at the surface, there are no horizontal l-isogenies from E,
and one ascending l-isogeny.

This theorem shows that, away from the surface, isogeny graphs just look like l-regular
complete trees of bounded height, with l descending isogenies at every level except the
floor.
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Putting the pieces together, we see that graphs of ordinary curves have a very rigid struc-
ture: a cycle of horizontal isogenies and a tree of descending isogenies of height vl(fπ)
(have a look at Figure 3.4).

End(E)

OK

Z[π]

Figure 3.4: A volcano of 3-isogenies and the corresponding tower of orders.

The surface is the component of the graph that has a more varied structure:

(0) If
(

∆K
l

)
= −1, there are no horizontal isogenies: the isogeny graph is just a complete

tree of degree l+ 1 (in the graph theoretic sense) at each level but the last. We call
this the Atkin case.

(1) If
(

∆K
l

)
= 0, there is exactly one horizontal isogeny ϕ : E→E′ at the surface. Since

E′ also has one horizontal isogeny, it necessarily is ϕ̂, so the surface only contains
two elliptic curves, each the root of a complete tree. We call this the ramified case.

(2) The case
(

∆K
l

)
= 1 is arguably the most interesting one. Each curve at the surface

has exactly two horizontal isogenies, thus the sub-graph made by curves on the
surface is two-regular and finite, i.e., a cycle. Below each curve of the surface there
are l − 1 curves, each the root of a complete tree. We call this the Elkies case.
Similarly we say that l is an Elkies prime.

Atkin:
(

∆K
l

)
= −1 ramified:

(
∆K
l

)
= 0 Elkies:

(
∆K
l

)
= +1

Figure 3.5: The three shapes of volcanoes of 2-isogenies of height 1.

The three cases are summarized in Figure 3.5. Their looks have justified the name isogeny
volcanoes for them [32]; in the Elkies case, we call crater the cycle at the surface.
We are left with one last question: how large are these graphs? We know from the theory
of complex multiplication that there is a bijection

Cl(O) −→ Ellq(O)

Ideal class of a 7−→ Isomorphism class of a · E.
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This confirms what we already knew, that |Ellq(O)| = h(O), but also lays the bases for
showing the following proposition, which answers our question on the size of l-isogeny
volcanoes.

Proposition 3.38. Let O be a quadratic imaginary order, and assume that Ellq(O) is
non-empty. Let l be a prime such that O is l-maximal, i.e., such that l does not divide the
conductor of O. All l-isogeny volcanoes of curves in Ellq(O) are isomorphic. Furthermore,
one of the following is true.

(0) If the ideal (l) is prime in O, then there are h(O) distinct l-isogeny volcanoes of
Atkin type, with surface in Ellq(O).

(1) If (l) is ramified in O, i.e., if it decomposes as a square l2, then there are h(O)/2
distinct l-isogeny volcanoes of ramified type, with surface in Ellq(O).

(2) If (l) splits as a product l · l̂ of two distinct prime ideals, then there are h(O)/n
distinct l-isogeny volcanoes of Elkies type, with craters in Ellq(O) of size n, where n
is the order of l in Cl(O).

But we can extract even more information from the group action. Note that (l) splits in
O if and only if ∆ is a non-zero square modulo l. This is equivalent to require that the
Frobenius endomorphism splits modulo l, i.e., that

π2 − tπ + q = (π − λ)(π − µ) mod `

for two distinct eigenvalues λ, µ. It is immediate to verify that the eigenspaces associated
to these eigenvalues are E[(π − λ, l)] and E[(π − µ, l)], therefore ideals l := (π − λ, l)
and l̂ := (π − µ, l) define two subgroups of E to which we can associated two Fq-rational
isogenies.

ϕl : E → l · E
ϕl̂ : E → l̂ · E

Since l̂l = l̂l = (l) we managed to characterize the prime ideals of Prop. 3.38. These classes
are the inverse one of the other in Cl(O), and therefore ϕl and ϕl̂ are dual isogenies.

λ

µ

λ
µ

λµ

λ
µ λ

µ

λ µ

λ
µ

Figure 3.6: An isogeny cycle for an
Elkies prime l, with edge directions as-
sociated with the Frobenius eigenvalues
λ and µ.

Figure 3.7: Graph of horizontal isogenies
on 12 curves, with isogenies of three dif-
ferent degrees
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We have already seen with Thm. ?? how invertible elements in Cl(O) preserve the en-
domorphisms structure of the curve, and therefore define horizontal isogenies in Ell(O).
Hence, we see that the eigenvalues λ and µ define two opposite directions on the `-isogeny
crater, independent of the starting curve, as shown in Figure 3.6. The size of the crater is
the order of (π−λ, l) in Cl(O), and the set Ellq(O) is partitioned into craters of equal size.
In this way we have just built a basic Schreier graph with parameters (Cl(O), S,Ellq(O)),

where S := {l, l̂}. In the sequel, we shall work with a larger edge set S, which will amount
to glue many isogeny craters together, as shown in Figure 3.7.

We just introduced Cayley graphs constructed from isogeny craters and, unsurprisingly,
they turn out to be expanders, provided we add enough edges to them.

Theorem 3.39. Let O be a quadratic imaginary order, and assume that Ellq(O) is
non-empty. Let δ > 0, and define the graph G on Ellq(O) where two vertices are con-
nected whenever there is a horizontal isogeny between them of prime degree bounded by
O((log q)2+δ). Then G is a regular graph and, under the generalized Riemann hypothesis
for the characters of Cl(O), there exists an ε independent of O and q such that G is a
two-sided ε-expander.

Proof. See [50].

3.4.3 End(E) ∼= O ⊆ Bp,∞

The last case to be treated is that of elliptic curves whose endomorphism ring is isomorphic
to a maximal order O in a quaternionic field Bp,∞. As we have already noticed, this case
only occurs with supersingular curves. In the following discussion we study the isogeny
graph of a supersingular elliptic curve defined over Fp2 , indeed every supersingular curve
is isomorphic to one defined over this field. We stress that isogenies between these kind
of curves are not necessarily defined over Fp2 . For this graph we give below a bound to
the number of nodes and show that, once fixed the definition field, there is only one con-
nected component. This will turn out to be a Ramanujan graph, therefore with excellent
expansion properties. If we restrict the study domain only to supersingular curves defined
over Fp, and we only consider isogenies over Fp, then the resulting graph can be proved
to be an isogeny volcano. Now let us explain in detail all these facts.

From the theory of quaternionic multiplication we immediately obtain a bound for the
size of an isogeny graph of supersingular curves defined over Fp2 . Thanks to Theorem 3.12
and to the Eichler mass formula, which quantify the class number of Bp,∞, we obtain the
exact size of the isogeny class.

Corollary 3.40. Let Sp2 the set of all supersingular j-invariants in Fp2. For a prime
p > 3 we have

|Sp2 | =
⌊ p

12

⌋
+


0 if p ≡ 1 mod 12,

1 if p ≡ 5, 7 mod 12,

2 if p ≡ 11 mod 12.

Proof. See [26].

Since isogeny graphs have isomorphism classes of elliptic curves as vertex, with this result
just stated we have a bound on the size of a supersingular isogeny graph over Fp2 . We can
even say more about the global structure of the graph, as the following result shows:
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Theorem 3.41. Let l 6= p be two primes. The l-isogeny graph of supersingular curves in
F̄p, is connected, (l + 1)-regular, and has the Ramanujan property.

Proof. See [67, 75, 76].

So, graphs of supersingular curves defined over Fp2 with l-isogenies, for a single prime
l 6= p, define expander graphs; two examples of such graphs are shown in Figure 3.8. These
graphs are called supersingular isogeny graphs and in general they are not isomorphic to
a Cayley graph.

Figure 3.8: Supersingular isogeny graphs of degree 2 (left) and 3 (right) on F972 .

Delfs and Galbraith [26] showed that if we limit to consider isogenies over Fp, then all
connected components are volcanoes, even in the supersingular case (where the depth is
at most 1 at l = 2 and 0 otherwise): if we take a supersingular elliptic curve E over Fp
with p > 3, we end up in Case 4 of Theorem 2.36. Thus we know according to the theorem
that EndFp(E) is an order in K := Q(

√
πp) and its conductor is coprime with p. Since

π2
p + p = 0 holds, we get K = Q(

√
−p). Furthermore,

Z[πp] = Z[
√
−p] = Z

[
d+
√
d

2

]
⊆ EndFp(E) ⊆ Z

[
dK +

√
dK

2

]
= OK

has to hold where the discriminant of EndFp(E) is d = −4p, OK is the maximal order
and dK the fundamental discriminant of K. Due to the properties of the fundamental
discriminant, we have d = c2 · dK where c is the conductor of Z[πp] in OK . From these
observations we can conclude that

• If p ≡ 1 (mod 4), remembering Def. 3.1 we always get dK = d = −4p, Z[πp] = OK

and hence EndFp(E) = Z[
√
−p] for a supersingular elliptic curve E over Fp.

• If p ≡ 3 (mod 4), we get dK = −p. Thus Z[πp] = Z[
√
−p] has conductor c = 2 in

OK = Z[1+
√
−p

2 ] and EndFp(E) must be one of those two orders.

In terms of isogeny-volcanoes we can say that we have at most two levels and we say E
is on the surface (resp. E is on the floor) if EndFp(E) = OK (resp. EndFp(E) = Z[−p]).
Note that for p ≡ 1 (mod 4) surface and floor coincide.
In the supersingular case there are fewer possibilities for l-isogenies up and down than for
ordinary volcanoes (though, even in the ordinary case tall volcanoes are quite rare). The
following statement makes it clear:

Proposition 3.42. Let ϕ be a non-horizontal isogeny between supersingular elliptic curves
over Fp. Then the degree of ϕ is divisible by 2.
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Proof. See [26, Lem. 2.2].

Therefore we have no isogenies of odd prime degree going up or down in this graph. To
determine how many isogenies and how many nodes there are we need some theory about
the ideal class group. We recall the relevant results in the following statements. For
further detail we refer to [26]. First we can make an observation about the number of
Fp-isomorphism classes of supersingular elliptic curves over Fp with a given j-invariant,
based on the following proposition.

Proposition 3.43. Let p > 3 be a prime and j ∈ Fp. Define Cp,j as the set of Fp-
isomorphism classes of elliptic curves defined over Fp with j-invariant j. Then we get

|Cp,j | =


6 if j = 0 and p ≡ 1 (mod 3)

4 if j = 1728 and p ≡ 1 (mod 4)

2 otherwise

Proof. It follows directly from [10, Theorem 2.2].

Since we know that for an elliptic curve E over Fp, with

j(E) = 0 : E is supersingular ⇐⇒ p ≡ 2 (mod 3)

j(E) = 1728 : E is supersingular ⇐⇒ p ≡ 3 (mod 4)

holds, we can deduce from Proposition 3.43 that given a supersingular j-invariant j there
are always exactly two Fp-isomorphism classes of elliptic curves over Fp with this j-
invariant. The following result states more precisely the whole structure of a supersingular
isogeny graph.

Theorem 3.44. Let p > 3 be a prime.

1. p ≡ 1 (mod 4): There are h(−4p) (with this notation we mean h(Q(
√
−4p)) super-

singular elliptic curves over Fp, all having the same endomorphism ring Z[
√
−p].

From each of these there is one outgoing Fp-rational horizontal 2-isogeny as well as
two horizontal l-isogenies for every prime l > 2 with (−pl ) = 1.

2. p ≡ 3 (mod 4): There are two levels in the supersingular isogeny graph. From each
vertex there are two horizontal l-isogenies for every prime l > 2 with (−pl ) = 1.

• If p ≡ 7 (mod 8), on each level h(−p) vertices are situated. Surface and floor are
connected 1 : 1 with 2-isogenies and on the surface we also have two horizontal
2-isogenies from each vertex.

• If p ≡ 3 (mod 8), we have h(−p) vertices on the surface and 3h(−p) on the
floor. Surface and floor are connected 1 : 3 with 2-isogenies, and there are no
horizontal 2-isogenies.

Proof. See [26, Thm. 2.7].

This provides a structure similar to that of the ordinary isogeny volcano, except that in
our case we have no more than two levels and for l > 2 only exactly two outgoing isogenies
from each elliptic curve (if any). This result can be used to adapt the algorithms from the
ordinary case that rely on the volcano structure.

We present a few small examples of the irregular structure of the full supersingular isogeny
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graph X(Fp2 , l). After that we display, for the same examples, the graphs X(Fp, l) which
have a much more regular structure. For the examples we use the primes p = 101, 103 and
83, one for each of the different cases that occur, respectively. To demonstrate the two
occurring structures we build the graphs for isogeny degrees l = 2 and the smallest prime
l > 2 in each case for that isogenies exist. We refer to [26] for further details.

Remark 3.45 (Edge representation). Until now we have never encountered isogeny graphs
in which a curve E has j-invariant j ∈ {0, 1728}. This allowed us to simplify the treatment
by drawing the graphs as undirected, and in fact in the applications we will find a way to
exclude this from happening. However, limited to the examples below, we will encounter
isogeny graphs in which inevitably j ∈ {0, 1728}. Note that for j(E) ≡ 0 and j(E) ≡ 1728
(mod p) there are respectively three and two non-equivalent isogenies mapping from E to
another curve E, but their dual isogenies are all equivalent. This is due to the fact that
|Aut(E)| = 6 or |Aut(E)| = 4 in these cases. If ϕ : E(K) → E′(K) is an isogeny and
ρ ∈ Aut(E), then ϕ ◦ ρ may not be equivalent (i.e., have the same kernel) as ψ, whereas
the dual of ϕ◦ρ is ρ̂◦ ϕ̂, so this is equivalent to the dual of ϕ (they have the same kernel).
For these reasons in the following examples we will denote all edges by specifying their
direction and emphasizing these multiple isogenies using a single arrow together with an
integer to indicate the multiplicity.

Remark 3.46 (Node representation). In the previous examples we have always depicted
an isogeny graph not giving importance to its vertices, that is ignoring the class of elliptic
curves that a given vertex represented. This reason was due to the fact that we were
interested to catch the overall structure of the graph, rather than the nature of individual
nodes. In the examples that follow we instead focus on nodes, and on how these ones
change as we narrow the base field from Fp2 to Fp. For this reason we denote each node
with the associated j-invariant. We have already seen that this way of representing the
graph is wrong. We fix the representation in the following way: in the case where two
curves are isomorphic over an extension of greater degree with respect to the one under
analysis, we will in any case label their vertices with their j-invariant, and we will represent
this vertex several times.

Example 3.47. For the first example we take p = 101, so that p ≡ 1 (mod 4). Thanks
to Cor. 3.40, we expect b101

12 c+ 1 = 9 supersingular j-invariants in Fp2 . In the next figure
we show how they are connected using 2-isogenies. The nodes labeled α and α represent
j-invariants in Fp2 \ Fp where α is the conjugate of α. The graph can be easily computed
with help of modular polynomials.

0 66 21 57 64 3 59

α

α

3

Figure 3.9: Supersingular 2-Isogeny Graph over F101
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In X(Fp, l) we will have h(−4p) = 14 nodes which are supersingular elliptic curves over Fp
with endomorphism ring Z[

√
−101]. There will be only one outgoing 2-isogeny from each

curve, so naturally the graph can not be connected. It can be seen in the following figure.

0 66

0 66

21 21

57 64 3 59

57 64 3 59

Figure 3.10: Fp-Rational Supersingular Isogeny Graph X(F101, 2)

It is notable that in this graph there are fewer connecting isogenies than in the full graph
before. For example, in the first graph we have two isogenies going from the node 64 to
the node 3 and two ones back, which are all missing in the new graph. This is due to the
fact that those isogenies are not defined over Fp , so they are not computed as edges in
X(Fp, 2). Likewise the two loops from 59 to itself are isogenies over Fp2 that are dual to
each other, whereas the loop at 21 is a Fp-rational isogeny that is its own dual. We also
observe, thanks to Prop. 3.43, that all nodes are duplicated. This is due to the fact that in
the graph described by Figure 3.9, each node associated with a j-invariant encloses elliptic
curves which are isomorphic over an extension of F101, therefore it is correct to represent
them as a single vertex in this figure, but it is not correct to do the same in Figure 3.10.

Example 3.48. For higher isogeny degree, the number of outgoing isogenies from each
vertex grows, so the graph becomes complicated to draw. Here we take l = 3, as

(−p
3

)
= 1.

59

21

3

α

α

640

57 66

3

Figure 3.11: Supersingular Isogeny Graph X(F101, 3)

Despite the complicated picture of the full graph, the graph over Fp becomes just a big
circle. In particular, it is already fully connected. This is because the ideal class group of
Q(
√
−101) is generated by a prime ideal of norm 3.

21

21

3

3

64

640

0 59

59

57

57

66

66

Figure 3.12: Rational Supersingular Isogeny Graph X(F101, 3)

Again we can see how the isogenies from the full graph that are defined over Fp2 vanish
in the rational graph, and the single loops become isogenies from an elliptic curve to its
quadratic twist.
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Example 3.49. Let p = 83, so that p ≡ 3 (mod 4) and p ≡ 3 (mod 8). The full graph
will have b83

12c + 2 = 8 vertices. Again we have two j-invariants α, α ∈ Fp2 \ Fp. The full
2-isogeny graph has the following structure.

0

28

50 17

α

α

67 68

3

2

Figure 3.13: Supersingular Isogeny Graph X(F83, 2)

In the graph over Fp we get h(−p) = 3 supersingular elliptic curves on the surface and
h(−4p) = 9 ones on the floor. In the next figure we can see how 2-isogenies connect floor
and surface as explained in the last case of Theorem 3.44.

50

17 280

68

67 6867

50

17 280

Figure 3.14: Rational Supersingular Isogeny Graph X(F83, 2)

Example 3.50. If we repeat the procedure for l = 3, the full graph looks like this.

28 17670 68 50

α

α

3

2

2

Figure 3.15: Supersingular Isogeny Graph X(F83, 3)

And in the graph over Fp we get two isogeny circles, one on the floor and one on the
surface.

28 17 68 17 28

67 0 0 67

68

50 50

Figure 3.16: Rational Supersingular Isogeny Graph X(F83, 3)

Example 3.51. Our example here is p = 103 where p ≡ 3 (mod 4) and p ≡ 7 (mod 8).
we expect b103

12 c+ 1 = 9 supersingular j-invariants in Fp2 . In this case we have four nodes
in Fp2 \ Fp.
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69 3423

α

α β

β24

80

2

Figure 3.17: Supersingular Isogeny Graph X(F103, 2)

The 2-isogeny graph over Fp in this case is connected: we have h(−p) = 5 supersingular
elliptic curves on the surface and also 5 on the floor, since they are in 1 : 1 correspondence.

80

23 23

69 69

80

24 24

34 34

Figure 3.18: Rational Supersingular Isogeny Graph X(F103, 2)

Example 3.52. The smallest prime l > 2 with (−103
l ) = 1 is l = 7. In the full graph every

vertex has eight outgoing isogenies so it is not nice to draw. The sub-graph of X(F103, 7)
only consisting of j-invariants in F103 is presented in the next figure, so it can be compared
to X(F103, 7) below.

806923 34 242 2

Figure 3.19: Subgraph of Supersingular Isogeny Graph X(F103, 7)

Again we get two isogeny cycles such that both floor and surface are fully connected when
we draw the graph X(F103, 7). This is because the ideal class group is cyclic and generated
by a prime ideal of norm 7.

80

69 69

23 23

80

34 34

24 24

Figure 3.20: Rational Supersingular Isogeny Graph X(F103, 7)
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Chapter 4

Isogeny-Based Cryptography

Now we present the main algorithms based on isogenies of elliptic curves. We begin by
describing the work of Couveignes [23], which dates back to 1997, where he proposed the
first isogeny-based algorithm using ordinary elliptic curves with the same endomorphism
ring O. His work was not published until ten years later. In 2006, Rostovtsev and Stol-
bunov independently propose a key-exchange protocol which is essentially the same as the
one described by Couveignes; we therefore refer to this protocol as Couveignes-Rostovtsev-
Stolbunov, or CRS for short. We describe this protocol in the first section. Despite the
innovative ideas, there are still some problems: it is difficult to find an efficient imple-
mentation, furthermore Childs, Jao and Soukharev manage to construct a subexponential
attack to the protocol. This attack strongly relies on the fact that Cl(O) is commuta-
tive, hence indirectly on the fact that O is commutative. While this may be tolerable
(e.g., classical subexponential factorization methods have not ended the widespread use
of RSA), a much bigger concern is that the scheme is unacceptably slow.

In the second section we show how these weaknesses have led Jao and De Feo to consider
the use of supersingular elliptic curves, whose full ring of endomorphisms is an order in
a quaternion algebra; in particular it is non-commutative. Their resulting key-agreement
scheme goes under the name SIDH [49], and was first published in 2011. As we will see,
SIDH is not just the Couveignes-Rostovtsev-Stolbunov scheme in which one substitutes
supersingular elliptic curves for ordinary elliptic curves.

In the third section we show how Castryck, Lange, Martindale, Panny and Renesn in
2018 managed to make the CRS computationally feasible [15]. The key to achieve this
result is to restrict to supersingular elliptic curves over a prime field Fp. Instead of the full
ring of endomorphisms, which is non-commutative, one should consider the sub-ring of Fp-
rational endomorphisms, which is again an order O in an imaginary quadratic field. In this
way CSIDH does not grant protection from the Childs-Jao-Soukharev attack, but solves
the main problem of CRS, that is its inefficiency. The section continues with a detailed
analysis of this protocol. Since the ultimate purpose of this discussion is to present CSIDH
and discuss its security, the discussion of Couveignes-Rostovtsev-Stolbunov and SIDH is
reduced to what is necessary for the understanding and contextualization of CSIDH.

4.1 CRS

The Couveignes-Rostovtsev-Stolbunov protocol arises from the work of Couveignes re-
garding the so-called homogeneous spaces. We summarize the related theory below.
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4.1.1 Homogeneous Spaces

Definition 4.1 (Principal homogeneous space). A principal homogeneous space (PHS)
for an abelian group G is a set X equipped with a freely transitive (i.e. regular) action
of G. That is, for any P and Q in X, there exists a unique g in G such that Q = g · P .
Equivalently, for every P in X, the map ϕP : G→ X which sends g to g ·P , is a bijection.

Remark 4.2. Schreier graphs are a natural consequence of principal homogeneous spaces.
The idea of Rostovtsev and Stolbunov will be precisely to improve the Couveignes protocol,
introducing these graphs.

Example 4.3. A trivial example of a principal homogeneous space is a group acting on
itself: fixed a group G, let X := G and define the action

G×G→ G

(g, a) 7→ g · a

Example 4.4. The classic example of a non-trivial homogeneous space is a vector space
on R2 which acts by translation on its underlying affine space.

Example 4.5. In the notations of Theorem ??, the set Ellq(O) is a principal homogeneous
space for the class group Cl(O), via the map

Cl(O)× Ellq(O)→ Ellq(O)

(a, E) 7→ a · E

as the theorem itself shows.

Given a homogeneous space, there are several algorithmic problems one would like to
consider. We focus on the following ones.

Definition 4.6 (Vectorization problem). Let X be a PHS over a group G and let P,Q be
elements of X. The associated vectorization problem consists in finding the unique g ∈ G
such that Q = g · P .

Definition 4.7 (Parallelization problem). Let X be a PHS over a group G and let
P,A,B ∈ X in a way that there exist g1, g2 ∈ G such that A = g1 · P and B = g2 · P .
The associated parallelization problem consists in finding the unique S ∈ G such that
S = (g1g2) · P . Note that in this case S = g1 ·B = g2 ·A.

The notation of the previous two definitions makes sense in the context of Example 4.4:
vectorization consists in computing the displacement vector between two points P and Q
in R2, while parallelization consists in completing the parallelogram with vertices P,A and
B. We refer to Figure 4.1 for a geometric perspective.

P Q P

A

B

S
g

g1

g2

g2

g1

Figure 4.1: Vectorization on the left and parallelization on the right The dashed arrows
denote the actions of the unknown group elements g, g1 and g2.
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We are interested in principal homogeneous spaces for which the previous problems are
difficult, but at the same time we would like that other tasks are easy to solve. This
directly leads us to the following definition.

Definition 4.8 (Hard homogeneous space). Let G be an abelian group, and X a set which
is a principal homogeneous space over G. We say that X is a hard homogeneous space
(HHS) over G if:

• The following tasks are easy to solve (e.g. polynomial time):

– Compute the group operations in G.

– Sample randomly from G with (close to) uniform distribution.

– Decide validity and equality of a representation of elements of X.

– Compute the action of a group element g ∈ G on some x ∈ X.

• The following tasks are hard to solve (e.g. not polynomial time):

– Solve the vectorization problem.

– Solve the parallelization problem.

This is a very natural object to study from the point of view of cryptography. Indeed, any
such hard homogeneous space leads in a quite natural and elegant manner to cryptographic
schemes for authentication and key-exchange: given two participants Alice and Bob, their
private keys are random elements a, b ∈ G. Their public keys are a · x0 and b · x0, where
x0 ∈ X is a public parameter set in advance. The common secret will therefore be

a · (b · x0) = (ab) · x0 = (ba) · x0 = b · (a · x0)

The private keys are protected by the difficulty of the vectorization problem, while the
public key is protected by the parallelization one. A diagram which sums up the operations
of this protocol is proposed in Table 4.1.

Public parameters A Hard Homogeneous Space (G,X).

An element x0 ∈ X.

Alice Bob

Pick random secret a ∈ G b ∈ G
Compute public data ga = a · x0 gb = b · x0

Exchange data ga −→ ←− gb
Compute shared secret gab = a · (gb) gab = b · (ga)

Table 4.1: Key exchange protocol based on a hard homogeneous space.

Couveignes had the idea to use isogeny graphs of ordinary elliptic curves to define a (con-
jectured) hard homogeneous space that does not base its security on the discrete logarithm
problem: the idea is to use as hard homogeneous space the craters of the set Ell(O) of
elliptic curves with endomorphism ring an order O in an imaginary quadratic field, for
a given prime field Fq. We then take Cl(O) as a group. The pair (Cl(O),Ell(O)) forms
an hard homogeneous space, so we can apply the construction defined above. However,
given a generic element of Cl(O), the best algorithm to evaluate its action on Ellq(O) has
subexponential complexity in q, making the protocol infeasible.
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Remark 4.9. Instead of choosing a unique generic element of G, we could choose many
small elements and consider their product to obtain our private key: consider the Schreier
graph described in Example 3.28, where X := Z∗13 and the group acting on that set
is a subgroup of Z13, more precisely it is the symmetric subgroup S := D ∪ D−1, with
D := {2, 3, 5}. Let us assume for the moment that the group action meets the requirements
to be an HHS. We can use this structure to define a protocol like the one just presented.
Compared to the protocol defined above, we make a variation on the construction of
the private key: instead of taking a random element in S, we choose a sequence ρ =
(σ1, . . . , σm) ∈ D∗. We therefore observe that such a sequence, together with a starting
vertex g ∈ G, defines a walk in the Schreier graph (S,G) by starting in g, and successively
taking the edges corresponding to the labels in ρ. We write ρ(g) for the vertex where the
walk defined by ρ and g ends. This is simply an alternative way to randomly sample an
element of G. Observe that, for any g ∈ G

ρ(g) = (σ1 · · ·σm) · g
= (σ1 · · ·σm−1)σm · g
= (σ1 · · ·σm−1) · gσm

= expg

(∏
σi

)
Hence, the order of the steps in a route does not matter: what counts is only how many
times each element of D appears in ρ. Now suppose that the two participants of the
protocol, Alice and Bob, choose as private keys ρA := {2, 3, 2, 5} ρB := {3, 3, 5, 2}. The
key exchange works as described in Figure 4.2.

g

gA

gAB

ggB

gAB

Figure 4.2: Example of key exchange on the Schreier graph of Figure 3.2. Alice’s route is
represented by continuous lines, Bob’s route by dashed lines. On the left, Bob computes
the shared secret starting from Alice’s public data. On the right, Alice does the analogous
computation.

We immediately realize that this protocol is nothing else than the classical Diffie-Hellman
protocol on the group G, presented in a twisted way.

While this example instance is of no practical interest, its instantiation using a Schreier
graph of the HHS Ellq(O) yields a usable variant of Couveignes’ key exchange. We fix a
set S of small norm representatives of ideal classes of Cl(O), corresponding to small degree
isogenies between curves in Ellq(O). Instead of uniformly sampling secrets from Cl(O),
we sample non-backtracking random walks in the Schreier graph of (Cl(O), S,Ellq(O)),
and exchange j-invariants as public data. The walks can be computed efficiently as a
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composition of small degree isogenies, and, assuming the graph is an expander and the
walks are long enough, they approach the uniform distribution on Ellq(O). This leads us
to the Couveignes-Rostovtsev-Stolbunov cryptosystem.

4.1.2 The Protocol

With this observation, we can give a key exchange protocol based on random walks in
graphs of horizontal isogenies.

The protocol never explicitly computes O, instead, it determines parameters in the follow-
ing order: first it computes a large enough finite field Fq. Then a curve E defined over Fq
and, given π the Frobenius endomorphism, its discriminant Dπ = t2π − 4q of E (through
point counting, and it is verified that it contains a large enough prime factor). Note that
tπ denotes the Frobenius trace. We compute a set L = {l1, . . . , lm} of primes that split in

Z[π], i.e. such that
(
Dπ
li

)
= 1, and for each prime li we take note of the factorization

π2 − tππ + q = (π − λi)(π − µi) (mod li)

Finally one of the roots, say λi, is chosen arbitrarily as positive direction.
We stress that the condition on the li’s guarantees that each graph of li-isogenies on
Ellq(O) is 2-regular. The choice of a positive direction allows us to orient the graph,
by associating to λi the isogeny with kernel E[li] ∩ ker(π − λi). The key exchange now
proceeds like the ordinary Diffie-Hellman protocol:

1. (Setup) To set up the cryptosystem we fix a prime q, an elliptic curve E/Fq with
order O and such that Dπ contains a large prime factor, and a set L mades up of
primes that split in O.

2. (Key Generation) Alice chooses a random walk ρA ∈ L∗ made of steps in L along
the positive direction she has chosen for each l, ending in EA = ρA(E). Note that
EA only depends on how many times each li appears in ρA, and not on their order.
Bob does the same, choosing a random walk ρB and computing EB = ρB(E).

3. (Key Exchange) Alice and Bob exchange EA and EB. Alice computes the shared
secret ρA(EB) and Bob computes the shared secret ρB(EA).

The protocol is summarized in Table 4.2.

Public parameters An elliptic curve E over a finite field Fq,
Dπ, the discriminant of the Frobenius endomorphism of E,

A set of primes L = {l1, . . . , lm} such that
(
Dπ
li

)
= 1,

A Frobenius eigenvalue λi for each li,

Alice Bob

Pick random secret ρA ∈ L∗ ρB ∈ L∗

Compute public data EA = ρA(E) EB = ρB(E)

Exchange data EA −→ ←− EB
Compute shared secret EAB = ρA(EB) EAB = ρB(EA)

Table 4.2: Couveignes-Rostovtsev-Stolbunov key exchange protocol.
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4.1.3 Security

We conclude this section with a discussion on the security of the Couveignes-Rostovtsev-
Stolbunov protocol. For now we do not go into the detail of the attacks we present, and
reserve its discussion for later sections. For the moment we consider appropriate only
to keep in mind the existence of such an attack. All the protocol’s security rests on the
isogeny path problem: given E and EA, find an isogeny ϕ : E → EA of smooth order. To
be safe against exhaustive search and meet in the middle attacks, the set Ellq(O) must be
large. However, some isogeny classes are much smaller than average, this is why we also
need check that Dπ has a large prime factor.

In 2010, Childs, Jao and Soukharev [17] show that breaking the Couveignes-Rostovtsev-
Stolbunov scheme amounts to solve an instance of the abelian hidden-shift problem,
for which quantum algorithms with subexponential time complexity are known to ex-
ist [58, 79]. While this attack may be tolerable, the main problem of the protocol is that
it is unacceptably slow: despite recent clever speed-ups due to De Feo, Kieffer, and Smith
[27, 54], several minutes are needed for a single key exchange at a presumed classical
security level of 128 bits.

4.2 SIDH

The attack due to Childs-Jao-Soukharev strongly relies on the fact that Cl(O) is com-
mutative, hence indirectly on the fact that O is commutative. This led Jao and De Feo
[52] to consider the use of supersingular elliptic curves. Their resulting (interactive) key-
agreement scheme goes under the name “Supersingular Isogeny Diffie-Hellman” (SIDH).
The current state-of-the-art implementation is SIKE [51], which was recently submitted to
the NIST competition on post-quantum cryptography [71]. We briefly present the protocol.

The use of supersingular elliptic curves has two advantages:

• the endomorphism ring is isomorphic to an order in a quaternion algebra, in partic-
ular, it is not commutative, and consequently the class group so. In any case, unlike
CRS, we no longer have the action of a group on a curve in a given isogeny class,
but we will exploit another solution to allow the key exchange.

• The underlying l-isogeny graph is no longer cyclic, but is a (l + 1)-regular graph,
which is both connected and expander. We observe that, since the graph has O(p)
vertices, a sequence of log p isogenies of degree l starting from any vertex leads to a
uniform distribution within the isogeny class, as Prop. 3.25 shows.

The main idea is the following: Alice and Bob choose two random walks in two distinct
l-isogeny graph, on the same vertex set of all supersingular j-invariants defined over Fp2
(consider in this regard Figure 3.8), they publish their curves and then complete the pro-
tocol analogously to Diffie-Hellman. The problem is that now there is not a commutative
group action, therefore it is not immediate to allow these two paths to commute.

Remark 4.10. Consider a finite field Fq, an elliptic curve E over Fq, and two isogenies
α : E → E/〈A〉 and β : E → E/〈B〉, for respectively two subgroup 〈A〉, 〈B〉 of E(Fq). We
want to define two isogenies α′ : E/〈B〉 → E/〈A,B〉 and β′ : E/〈A〉 → E/〈A,B〉, in such
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a way that the image curves are the same (up to isomorphisms). Observe that

Im(β′) = E/〈A,B〉 ⇐⇒ Im(β′ ◦ α) = E/〈A,B〉
⇐⇒ ker(β′ ◦ α) = 〈A,B〉
⇐⇒ ker(β′) = α(〈B〉)

Where the last step is justified by the fact that by hypothesis ker(α) = 〈A〉. The same
reasoning applies to α′. A corresponding diagram is shown in Figure 4.3.

kerα = 〈A〉

kerβ = 〈B〉

kerα′ = 〈β(A)〉

kerβ′ = 〈α(B)〉

E E/〈A〉

E/〈B〉 E/〈A,B〉

α

α′

β β′

Figure 4.3: Commutative isogeny diagram.

We will use exactly this idea to allow us to reach a common secret in the supersingular
graph of SIDH, let us see how.

4.2.1 The Protocol

• (Setup) To set up the cryptosystem, we fix two distinct primes lA and lB
1, and two

exponents eA and eB. Let p be a prime such that p = f · leAA · l
eB
B ± 1 for some very

small f . We want to choose lA and lB such that leAA and leBB are about the same
size, ideally leAA ≈ leBB ≈

√
p. Now Alice and Bob agree on a supersingular curve E

defined over Fp2 . Note that

E(Fp2) ∼= (Z/leAA Z)2 × (Z/leBB Z)2 × (Z/fZ)2.

Now they fix public bases of their respective torsion groups:

E[leAA ] = 〈PA, QA〉,
E[leBB ] = 〈PB, QB〉.

• (Key generation) To start the protocol, Alice chooses random secret integers mA

and nA in Z/leAA Z and construct the point A := [mA]PA+[nA]QA, of order leAA . Now
she consider the subgroup

〈A〉 = 〈[mA]PA + [nA]QA〉 ⊆ E[leAA ]

which has clearly order leAA . It generates the kernel of ϕA : E → EA ∼= E/〈A〉,
with degree leAA , which she computes as a series of lA-isogenies. Her public key is
(EA, ϕA(PB), ϕA(QB)). Analogously Bob construct a private subgroup

〈B〉 = 〈[mB]PB + [nB]QB〉 ⊆ E[leBB ]

of order leBB and computes the lnBB -isogeny ϕB : E → EB ∼= E/〈B〉 as a series of
lB-isogenies; his public key is (EB, ϕB(PA), ϕB(QA)).

1These values will be very small, typically 2 or 3.
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• (Key exchange) To compute the shared secret E/〈A,B〉, Alice needs to compute the
isogeny α′ : E/〈B〉 → E/〈A,B〉, whose kernel is generated by ϕB(A). We see that
the kernel of α′ depends on both secrets, thus Alice cannot compute it without Bob’s
assistance. From Bob’s public key Alice takes ϕB(PA) and ϕB(QA). In this way she
compute

[mA]ϕB(PA) + [nA]ϕB(QA) = ϕB([mA](PA)) + ϕB([nA](QA))

= ϕB([mA](PA) + [nA](QA))

= ϕB(A)

and computes the leAA -isogeny

ϕ′A : EB → EBA = EB/〈ϕB(A)〉 ∼= E/〈A,B〉

Bob performs the analogous computation, with the help of Alice, and computes the
leBB -isogeny

ϕ′B : EA → EAB = EA/〈ϕA(B)〉 ∼= E/〈A,B〉

The shared secret is the j-invariant j(EAB) = j(EBA) in Fp2 .

The protocol is sum up in Table 4.3.

Public parameters Primes lA, lB, and a prime p = leAA leBB f ± 1.

A supersingular elliptic curve E over Fp2 of order (p± 1)2.

A basis 〈PA, QA〉 of E[leAA ].

A basis 〈PB, QB〉 of E[leBB ].

Alice Bob

Pick random secret A = [mA]PA + [nA]QA B = [mB]PB + [nB]QB

Compute secret isogeny α : E → EA = E/〈A〉 β : E → EB = E/〈B〉

Exchange data EA, α(PB), α(QB) −→ ←− EB, β(PA), β(QA)

Compute shared secret E/〈A,B〉 = EB/〈β(A)〉 E/〈A,B〉 = EA/〈α(B)〉

Table 4.3: Supersingular Isogeny Diffie-Hellman key exchange protocol.

4.2.2 Security

Extra Points. The protocol shows that in the key exchange we share much more in-
formation than we are used to with a normal Diffie-Hellman style key exchange, indeed
Alice transmits not only the image curve E/〈A〉, but also the image of the points PB, QB,
therefore the security of this protocol cannot be based on the isogeny path problem, and
must be formalized ad hoc.

Definition 4.11 (SIDH isogeny problem). Let (E,R1, S1, R2, S2) be a SIDH public key.
Let EA be such that there is an isogeny ϕA : E → EA of degree le11 . Let R′2 = ϕA(R2), S′2 =
ϕA(S2). The problem is: Given (E,R1, S1, R2, S2, EA, R

′
2, S
′
2), determine an isogeny ϕA :

E → EA of degree le11 such that R′2 = ϕA(R2) and S′2 = ϕA(S2).

Remark 4.12. Let 0 ≤ x, y < le22 and set T = [x]R2 + [y]S2. Then ϕA(T ) = [x]R′2 + [y]S′2
can be computed. Hence an attacker can compute as many pairs (T, ϕA(T )) on the graph
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of ϕA as he likes. A natural approach is to compute ϕA by solving an interpolation
problem. However the difficulty is that ϕA has degree le11 and so is described by rational
functions of exponential degree. As of now, there are no algorithms that take advantage of
this fact to force the protocol, however sharing this extra information could be a weakness
in the future.

Public Key Validation. One of SIDH’s biggest problems concerns its public key val-
idation, i.e. the ability to verify that a public key was honestly generated. Suppose we
have an algorithm that, given a prime l, a positive integer n, two elliptic curves E0, E,
efficiently decides whether the curve E is ln-isogenous to E0. Such an algorithm would
allow us to verify whether Alice or Bob’s public key was honestly generated (by calling the
algorithm on (lA, nA, E0, EA) or (lB, nB, E0, EB), respectively). However, as we see in [92],
this algorithm can also be used to efficiently recover secret keys from public keys. Indeed,
take Alice’s public curve EA; there are lA + 1 curves lA-isogenous to it. Computing each
of these isogenies ϕ : EA → E′A, we call the algorithm on (lA, nA− 1, E0, E

′
A); if it returns

true, then ϕ is the last lA-isogeny in Alice’s secret key. Iterating this procedure reveals
the entire key. This shortcoming leads to polynomial-time active attacks [36] for which
countermeasures are expensive. For example, SIKE [51], which is the only isogeny-based
candidate KEM in the NIST process, handles this by applying a transformation proposed
by Hofheinz, Hövelmanns, and Kiltz [48] which is similar to the Fujisaki–Okamoto trans-
form [34], essentially doubling the running time on the recipient’s side compared to an
ephemeral key exchange.

Lack of Symmetry. On a formal level, there are some profound differences between
SIDH and classical Diffie-Hellman. The most obvious is the lack of symmetry in SIDH
between Alice and Bob, whose roles are no longer interchangeable. This is reflected by
their distinct and incompatible key spaces, which are in turn distinct from the shared
secret space and the space the base curve lives in. Alice’s private key encodes a sequence
of lA-isogenies of length nA, while Bob’s encodes a sequence of lB-isogenies of length nB.
Alice’s public key belongs to the space of (isomorphism classes of) elliptic curves equipped
with a distinguished lnBB -torsion basis, while Bob’s is equipped with an lnAA -torsion basis
instead. The base curve E0 is drawn from yet another space: it is equipped with an
lnAA lnBB -torsion basis.

4.3 CSIDH

In this section we show that adapting the Couveignes-Rostovtsev-Stolbunov scheme to su-
persingular elliptic curves is possible, provided that one restricts to supersingular elliptic
curves defined over a prime field Fp. Instead of the full ring of endomorphisms, which is
non-commutative, we consider the sub-ring of Fp-rational endomorphisms, which is again
an order O in an imaginary quadratic field. As before Cl(O) acts via isogenies on the
set of Fp-isomorphism classes of elliptic curves whose Fp-rational endomorphism ring is
isomorphic to O and whose trace of Frobenius has a prescribed value; in fact if p ≥ 5
then there is only one option for this value, namely 0, in contrast with the ordinary case.
Starting from these observations, the desired adaptation of the Couveignes-Rostovtsev-
Stolbunov scheme almost unrolls itself. We call the resulting scheme CSIDH, where the
C stands for commutative. While this fails to address Jao and De Feo’s initial motivation
for using supersingular elliptic curves, which was to avoid the Lq[1/2] quantum attack
due to Childs-Jao-Soukharev, we show that CSIDH eliminates the main problem of the
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Couveignes-Rostovtsev-Stolbunov scheme, namely its inefficiency.

We begin by describing the protocol, and then go on to discuss the design choices. Then
we describe how does the public-key validation work, and discuss the security of the pro-
tocol, both from a classical and quantum perspective. We discuss the attacks either from
the theoretical point of view, i.e. as asymptotic estimates, and as real instances. Finally,
we propose a proof-of-concept implementation, with related speed estimates.

4.3.1 The Protocol

We immediately present the protocol, after which we justify the constructive choice and
explain how some operations are possible.

• (Setup) Global parameters of the scheme are a large prime p = 4 · l1 · · · ln− 1, where
the li are small distinct odd primes, and the supersingular elliptic curve E0 over Fp
defined by y2 = x3 + x, with endomorphism ring O = Z[π], where π denotes the
Frobenius endomorphism.

• (Key generation) The private key is an n-tuple (e1, ..., en) of integers, each sampled
randomly from a range {−m, ...,m}. These integers represent the private key, that
is the ideal class [a] = [le11 · · · lenn ] ∈ Cl(O), where li = (li, π − 1). The public key is
the coefficient A ∈ Fp of the elliptic curve [a]E0 : y2 = x3 + Ax2 + x obtained by
applying the action of [a] to the curve E0.

• (Key Exchange) Suppose Alice and Bob have key pairs ([a], A) and ([b], B). Upon
receiving Bob’s public key B ∈ Fp \ {±2}, Alice verifies that the elliptic curve
EB : y2 = x3 + Bx2 + x is indeed in Ellp(O, π). She then applies the action of
her secret key [a] to EB to compute the curve [a]EB = [a][b]E0. Bob proceeds
analogously with his own secret [b] and Alice’s public key A to compute the curve
[b]EA = [b][a]E0. The shared secret is the Montgomery coefficient S of the common
secret curve [a][b]E0 = [b][a]E0 written in the form y2 = x3 + Sx2 + x, which is the
same for Alice and Bob.

The protocol is summarized in Table 4.4.

Public parameters A prime p of the form 4 · l1 · · · ln − 1

E0 := y2 = x3 + x over Fp
Alice Bob

Pick random secret (e1, ..., en) ∈ {−m, ...,m}∗ (e′1, ..., e
′
n) ∈ {−m, ...,m}∗

Compute public data EA = [a]E0 = [le11 ...l
en
n ]E0 EB = [b]E0 = [l

e′1
1 ...l

e′n
n ]E0

Exchange data EA −→ ←− EB
Compute shared secret EAB = [a]EB EAB = [b]EA

Table 4.4: CSIDH key exchange protocol.

While describing the protocol we have overlooked some important aspects, for example,
why do we take a prime p of the form 4 · l1 · · · ln− 1? How do we prove that the endomor-
phism ring of E0 is Z[π]? Why do we have that, for any li as above, in the class group
liO = li · li = (li, π − 1)(li, π + 1), or equivalently, why are the Frobenius eigenvalues ±1?
Why can the curve [a][b]E0 still be expressed in Montgomery form? Let’s give an answer
to all these questions.
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4.3.2 Design Choices

In this subsection, we discuss the parameters choice for the protocol defined above. We
show how these choices make CSIDH a feasible protocol, differently from its predecessor.

Supersingular curves

One of the biggest limitations of the Couveignes-Rostovtsev-Stolbunov protocol is the in-
efficiency in the search for Elkies primes. We stress that these primes are of paramount
importance for the protocol, as they guarantee us to decompose the ideal lO as the prod-
uct of the two prime ideals l = (l, π − λ) e l = (l, π − µ), where π denotes the Frobenius
endomorphism. De Feo-Kieffer-Smith tried to speed up this search by choosing a field of
characteristic p, with p congruent to −1 modulo many small odd primes l. At this point
they looked for an elliptic curve E/Fp such that |E(Fp)| is congruent to 0 modulo as many
l as possible. This would guarantee the existence of points of order l over E(Fp). These
properties ensure that lO decomposes as a product of l = (l, π − 1) and l = (l, π + 1).
For such primes l it is possible to compute the action of the corresponding classes [l] and
[l] = [l]−1 by applying Vélu’s formulæ to the curve E. Hoping that this procedure is feasi-
ble for a fairly large number of such primes, we expect a generic element of the class group
to be written as a product of powers of such small ideals l. In this way it would be possible
to efficiently compute the action of a generic element of Cl(O). Despite the considerable
effort leading to various improvements, the results obtained by De Feo, Kieffer and Smith
are discouraging. With the best parameters found within 17000 hours of CPU time (for
which we have only 7 small primes), evaluating one class-group action still requires several
minutes of computation to complete. This suggests that without new ideas, the original
Couveignes-Rostovtsev-Stolbunov scheme will not become anything close to practical in
the foreseeable future.

This obstacle becomes trivial when using supersingular curves instead of ordinary curves,
since for p ≥ 5 any supersingular elliptic curve over Fp has exactly p + 1 rational points,
i.e. |E(Fp)| = p+ 1, so that

|E(Fp)| ≡ p+ 1 (mod li)

≡ 4 · l1 · · · ln − 1 + 1 (mod li)

≡ 0 (mod li)

In other words | E(Fp) | is congruent to 0 modulo all primes li that we used in building p.

The use of supersingular elliptic curves over Fp has several other advantages: we have
already observed that Cl(O) is a finite abelian group, whose cardinality is asymptotically
|Cl(O)| ≈

√
|Dπ| =

√
|t2π − 4p|. More precise heuristics actually predict that |Cl(O)|

grows a little bit faster than
√
|Dπ|, but the ratio is logarithmically bounded so we con-

tent ourselves with the above estimate. If the absolute value |t| of the trace of Frobenius
is “not too big”, the discriminant Dπ is about the size of p, hence by the above approx-
imation we may assume |Cl(O)| ≈ √p. In the case of supersingular curves the trace of
the Frobenius t is 0, therefore the absolute value of the discriminant Dπ = |t2 − 4p| = 4p
is as big as possible. As a direct consequence, the size of Cl(O) is close to its maximum
possible value for a fixed choice of p. Conversely, this implies that for a fixed security level
we can do an almost minimal choice for p, which directly affects the key size.

Remark 4.13. The choice of using supersingular curves therefore allows us to have ad-
vantages both for the research of the Elkies primes and the size of the class group. In
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this regard we recall the CM construction from [11], which in principle could be used
to construct ordinary elliptic curves with many points of small order, but the related
endomorphism ring have very small class groups, excluding them for the Couveignes-
Rostovtsev-Stolbunov key-exchange.

Parameters

As shown in the protocol in Table 4.4, we use a prime p of the form 4 · l1 · · · ln − 1,
where the li’s are small odd distinct primes. It turns out that this choice is also beneficial
for other reasons: in this way we have p ≡ 3 (mod 4), and if we fix an elliptic curve
E0 : y2 = x3 + x over Fp (which has j-invariant j = 1728), thanks to Prop. 3.43, it
turns out it is supersingular. The Frobenius endomorphism π satisfies the characteristic
equation π2− tπ+ p = 0 for t = 0, that is, π2 = −p, so its Fp-rational endomorphism ring
is an order2 in the imaginary quadratic field Q(

√
−p).

Rational Elkies Primes

From the theory of complex multiplication, in particular from Theorem 3.44, the choices
made above imply that the li-isogeny graph is a disjoint union of cycles. Moreover, since
π2−1 ≡ 0 (mod li) the ideals liO split as liO = li·li, where li = (li, π−1) and l̂i = (li, π+1).
In other words, all the li are Elkies primes.

Sampling From the Class Group

Ideally, we would like to know the exact structure of the ideal-class group Cl(O) to be
able to sample elements uniformly at random. This can be done in subexponential time
using an algorithm of Hafner and McCurley [46], but unfortunately, this requires too
much computation for the sizes of Dπ we are working with, hence we resort to heuristic
arguments. Assuming that the li do not have very small order and are “evenly distributed”
in the class group, we can expect ideals of the form le11 le22 · lenn for small ei to lie in the same
class only very occasionally. For efficiency reasons, it is desirable to sample the exponents
ei from a short range centered around zero, say {−m, ...,m} for some integer m. We will
argue later that choosing m such that 2m+ 1 ≥ n

√
| Cl(O) | is sufficient. Since the prime

ideals li are fixed global parameters, the ideal
∏
i l
ei
i may simply be represented as a vector

(e1, ..., en).

Remark 4.14. In practice, the proof-of-concept implementation proposed at the end of
this discussion uses 74 small odd prime, to which we associate ideals l1, l2, ..., l74. Heuristi-
cally, under the assumption that the product le11 · · · lenn evenly generate elements in Cl(O)
(as the exponents change), we can compute the minimum interval in which we can choose
the exponents themselves, in fact to be able to represent a class group of 256-bit size
we just have to impose log(2 · x + 1)74 = 256 and observe that for x = 5 we obtain
log(2 · 5 + 1)74 ≈ 255.9979. We therefore expect that all elements of the class group can
be expressed as [l1]e1 [l2]e2 · [l74]e74 , where the exponents ei are sampled from {−5, ..., 5}.
The action of such an element can be computed as the composition of at most 5 ·74 = 370
easy isogenies evaluations. This should be compared to the use of 7 small primes (as was
the case with De Feo-Kieffer-Smith), where the same approach would require exponents
in an huge interval: the equation log(2 ·x+ 1)7 = 256 can be solved for x ≈ 2256/7−1 ≈ 235

and the computation of the action of a generic element in Cl(O) could require 235 · 7

2More precisely, we will show that EndFp(E0) = Z[π], which has conductor 2.
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isogeny evaluations. Considering this, De Feo-Kieffer-Smith also had to resort to other
prime numbers, with less beneficial properties, requiring them to work in extensions of Fp,
and therefore failing to make the protocol feasible.

Evaluating the Class Group Action

We now assume that any element of the class group can be represented as a product of
small prime ideals, hence we describe how to compute [l]E for a prime ideal l = (l, π− λ).
There are (at least) the following ways to proceed, which vary in efficiency depending on
the circumstances:

• Find Fp-rational roots of the modular polynomial ϕl(j(E), Y ) to determine the two
j-invariants of possible co-domains (i.e., up to four non-isomorphic curves, though
in the ordinary case wrong twists can easily be ruled out); compute the kernel
polynomials [57] χ ∈ Fp[x] for the corresponding isogenies (if they exist); if (xp, yp) =
[λ](x, y) modulo χ and the curve equation, then the co-domain was correct, else
another choice is correct.

• Factor the l-th division polynomial ψl(E) over Fp; collect irreducible factors with
the right Frobenius eigenvalues (as above); use Kohel’s formulæ [57, Section 2.4] to
compute the co-domain.

• Find a basis of the l-torsion - possibly over an extension field - and compute the
eigenspaces of Frobenius; apply Vélu’s formulæ to a basis point of the correct
eigenspace to compute the co-domain.

As observed in [27, 54], the last method is the fastest if the necessary extension fields are
small. The optimal case is λ = 1, which is exactly the case in which we fall. Note that
if p ≡ −1 (mod l), then λ = 1 automatically implies µ = −1. In this case the kernel of
ϕli is the intersection of the kernels of the scalar multiplication [li] and the endomorphism
π − 1. That is, it is the subgroup generated by a point P of order li which lies in the
kernel of π − 1 or, in other words, is defined over Fp. Similarly, since

(π − 1)(π + 1) = (π2 − 1)

and ker(π − 1) = Fp, ker(π2 − 1) = Fp2 directly implies ker(π + 1) = Fp2 \ Fp ∪ {O}, the
kernel of ϕli

is generated by a point Q of order li that is defined over Fp2 but not Fp and
such that π(Q) = −Q. This greatly simplifies and accelerates the implementation, since
both co-domains can easily be computed using Vélu’s formulæ over an at most quadratic
extension.

Computing the action of an ideal class represented by
∏
i l
ei
i on an elliptic curve E pro-

ceeds as outlined above. Since π2 = −p ≡ 1 (mod li), we are in the favourable situation
that the eigenvalues of Frobenius on all li-torsion subgroups are +1 and −1 and we can
efficiently compute the action of li. This step could simply be repeated for each ideal l±1

i

whose action is to be evaluated.

Remark 4.15. There are actually at least two other improvements that can be made, as
we will show later. With the former, we will observe that a good choice of curve model
allows for pure prime field computations. Alternatively, with the second, we will observe
that for the crater on which we work, every curve present therein has its quadratic twist
that is mirrored with respect to the axis passing through y2 = x3 + x. This allows us to
work in Fp and then switch to the quadratic twist of the resulting curve.
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4.3.3 Public-Key Validation

One of the biggest unsolved problems of SIDH is the lack of public-key validation, that is,
the inability to understand if a public key was generated honestly. The risk we want to
avoid is that an attacker exploits a weak public key to infer information about our private
key. For CSIDH this problem does not arise, thanks to the following proposition.

Proposition 4.16. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8), and let E/Fp be a
supersingular elliptic curve. Then EndFp(E) = Z[π] if and only if there exists A ∈ Fp such
that E is Fp-isomorphic to the curve EA : y2 = x3 + Ax2 + x. Moreover, if such an A
exists then it is unique.

This result shows that all Montgomery curves EA : y2 = x3 + Ax2 + x over Fp that
are supersingular appear in the Cl(O)-orbit of E0. Moreover their Fp-isomorphism class
is uniquely determined by A., hence it may serve as a shared secret3 without taking j-
invariants. Therefore, by choosing public keys to consist of a Montgomery coefficient
A ∈ Fp, Proposition 4.16 guarantees that A represents a curve in the correct isogeny
class Ell(O, π), where π2 = −p and O = Z[π], under the assumption that it is smooth
(i.e. A ∈ Fp/{±2}) and supersingular. Since we work over Fp with p ≡ 3 (mod 8) and
start from the curve E0 : y2 = x3 + x with Fp-rational endomorphism ring O = Z[π].
All we need to do upon receiving a candidate public key y2 = x3 + Ax2 + x is check for
supersingularity, which is an easy task.

Verifying Supersingularity

As p ≥ 5, it is a known fact that an elliptic curve E defined over Fp is supersingular if
and only if |E(Fp)| = p + 1. In general, proving that an elliptic curve has a given order
N is easy if the factorization of N is known; exhibiting a subgroup (or in particular, a
single point) whose order d is a divisor of N greater than 4

√
p implies the order must be

correct. Indeed, the condition d > 4
√
p implies that there exists only one multiple of d in

the Hasse interval [p + 1 − 2
√
p ; p + 1 + 2

√
p]. This multiple must be the group order

by Lagrange’s theorem. Note that in our case a random point generally has very large
order d: from the well known theory regarding the classification of finite abelian groups,
E(Fp) ∼= Z4 ×

∏
i Zli , so that li|d with probability (li − 1)/li, indeed an element of E(Fp)

has order a multiple of li if and only if it is of the form (x4, xl1 , ..., xln) ∈ Z4×
∏
i Zli with

li 6= 0. The probability that this happens is therefore

P(li | d) =
(li − 1) · 4 ·

∏
j 6=i lj

4 ·
∏
j lj

=
(li − 1)

li
.

Ignoring the even part, this shows that the expected order is lower bounded by

n∏
i=1

[
li · P(li | d) + 1 · P(li - d)

]
=

n∏
i=1

(li − 1 +
1

li
) ≈ p

This product is about the same size as p, and it is easily seen that a random point will with
overwhelming probability have order (much) greater than 4

√
p. This observation leads to

a straightforward verification method, see Algorithm 1.

3The combination of large size of Cl(O) and representation by a single Fp-element A explains the small
key size of the scheme.
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Algorithm 1 Verifying supersingularity

Input An elliptic curve E/Fp , where p = 4 · l1 · · · ln − 1.
Output Supersingular or ordinary.

1: function verifySupersingular(E/Fp)
2: Randomly pick a point P ∈ E(Fp) and set d← 1.
3: for each li do
4: Set Qi ← [(p+ 1)/li]P .
5: if [li]Qi 6=∞ then return ordinary.

6: if Qi 6=∞ then Set d← li · d.
7: if d > 4

√
p then return supersingular.

If the condition d > 4
√
p does not hold at the end of Algorithm 1, the point P had too

small order to prove | E(Fp) |= p+1. In this case one may retry with a new random point
P (although this outcome has negligible probability and could just be ignored). There is
no possibility of wrongly classifying an ordinary curve as supersingular. Note moreover
that if x-only Montgomery arithmetic is used and the point P is obtained by choosing a
random x-coordinate in Fp , there is no need to differentiate between points defined over
Fp and Fp2 ; any x-coordinate in Fp works. Indeed, any point that has an x-coordinate in
Fp but is only defined over Fp2 corresponds to an Fp-rational point on the quadratic twist,
which is supersingular if and only if the original curve is supersingular. There are more
optimized variants of this algorithm; the bulk of the work are the scalar multiplications
required to compute the points Qi = [(p + 1)/li]P . Since they are all multiples of P
with shared factors, one may more efficiently compute all Qi at the same time using a
divide-and-conquer strategy, at the expense of higher memory usage.

4.3.4 Security

As in Couveignes-Rostovtsev-Stolbunov, the central problem of our new primitive is the
following analogue to the classical discrete-logarithm problem.

Definition 4.17 (Key recovery problem). Given two supersingular elliptic curves E0, E
defined over Fp with the same Fp-rational endomorphism ring O, find an ideal a of O such
that [a]E0 = E. This ideal must be represented in such a way that the action of [a] on a
curve can be evaluated efficiently, for instance a could be given as a product of ideals of
small norm.

To be precise, this scheme relies on slightly different hardness-assumptions, as shown in
definition 4.8. However, since there seems to be no way to attack the key exchange without
recovering one of the keys, we will assume in the following analysis that the best approach
to break the key-exchange protocol is to solve the key recovery problem.

Remark 4.18. We point out that the “inverse Diffie-Hellman problem” is easy in the
context of CSIDH: given [a]E0 we can compute [a]−1E0 by mere quadratic twisting: indeed
if p ≡ 3 (mod 4) it is possible to show that the connected component of E0 is symmetric,
meaning that if E is n step along GFp,l in one direction from E0, then the curve that is n
steps in the other direction is the quadratic twist of E4.

4It is also interesting to observe that the symmetry around E0 confirms the known fact that the class
number of Z[

√
−p] is odd.
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Figure 4.4: A supersingular component of GF83,3. For a fixed parameter a, we denoted
with Ea := y2 = x3 + ax2 + x. All curves have Fp-rational endomorphism ring Z[

√
−83].

Running clockwise corresponds to the repeated action of [(3, π − 1)].

This clearly contrasts with the classical group-based setting. Note that just like identifying
a point (x, y) with its inverse (x,−y) in an ECDLP setting, this implies a security loss
of one bit under some attacks: An attacker may consider the curves [a]E and [a]−1E
identical, which reduces the search space by half.

No Extra Information. One of the most worrying properties of SIDH seems to be that
Alice and Bob publish the images of known points under their secret isogenies along with
the co-domain curve, i.e., a public key is of the form (E,ϕ(P ), ϕ(Q)) where ϕ : E0 → E
is a secret isogeny and P,Q ∈ E0 are publicly known points. Although thus far nobody
has succeeded in making use of this extra information to break the original scheme, Petit
presented an attack using these points when overstretched, highly asymmetric parameters
are used [73]. The Couveignes–Rostovtsev–Stolbunov scheme, and consequently our new
scheme CSIDH, do not transmit such additional points: a public key consists of only an
elliptic curve. Thus it is reasonable that a potential future attack against SIDH based on
these torsion points would not apply to CSIDH.

Chosen-Ciphertext Attacks. This type of attack could be carried out if Eve performs
a key-exchange with Alice using a weak key, and thanks to this he manages to infer
some information about her private key. As explained above, the CSIDH group action
features efficient public-key validation. This implies it can be used without applying a
CCA transform such as the Fujisaki–Okamoto transform [34] used in SIDH, thus enabling
efficient non-interactive key exchange and other applications in a post-quantum world.

Classical Security

We begin by considering classical attacks.

Exhaustive Key Search. The most immediate way to attack any cryptosystem is to
use brute-force. We show how CSIDH performs under this attack. As we have already
observed, a private key of our scheme consists of an exponent vector (e1, ..., en) where
each ei is in the range {−m, ...,m}, which represents the class le11 · · · lenn ∈ Cl(O). This
choice could lead to have the same class represented in more than one way, and this could
weaken the security of the protocol. We show that this is indeed the case, yet the number
of representations for the same class is small. The maximum number of these representa-
tions immediately yields the minimum entropy5, which measures the amount of work an

5That is the logarithm in base 2 of the quantity under analysis
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attacker has to do to successfully lead a key-retrieval.

In the following discussion we assume that Cl(O) is almost cyclic, in the sense that it
has a very large cyclic component, say of order N not too small than |Cl(O)|. Accord-
ing to Cohen and Lenstra’s heuristics, this is true with high probability for a random
imaginary quadratic field [18]. We then define the map

ρ : Cl(O)→ (ZN ,+)

which projects an element of the class group onto the cyclic subgroup (isomorphic to) ZN .
For each small prime ideal li we define αi := ρ(li). We assume α1 = 1; this can be done
without loss of generality when at least one element li has order N in the class group.
Observe that for each [a] ∈ Cl(O) any representation [le11 · · · lenn ] of [a] yields a solution of
the linear congruence

e1 · 1 + e2 · α2 + · · ·+ en · αn ≡ ρ([a]) (mod N) (4.1)

Therefore the number of solutions of this equation gives an upper bound to the number
of representations of [a]. Observe that an element (e1, ..., en) is a solution of Equation 4.1
if and only if it is an element of a shifted version6 of an integer lattice L generated by the
rows of the matrix

L =


N 0 0 · · · 0
−α2 1 0 · · · 0
−α3 0 1 · · · 0

...
...

...
. . .

...
−αn 0 0 · · · 1


i.e. it is an element of the form (Nz1 − α2z2 − · · · − αnzn, z2, · · · , zn) + v, for some
zi ∈ Z and v ∈ Zn. This is easy to show, indeed requiring the existence of a vector
(e1, ..., en) such that 4.1 holds is equivalent to ask that there exists an integer k for which
e1 · 1 + e2 · α2 + · · ·+ en · αn − ρ([a]) = Nk. This is in turn equivalent to

e1 = Nk − e2α2 − · · · − enαn + ρ([a])

e2 = e2

...

en = en

Defining z1 = k, z2 = e2, ..., zn = en, v = (ρ([a]), 0, · · · , 0) we immediately get the result.

We now recall that, taking L a full-rank lattice in Rn, and C a measurable subset of Rn,
the Gaussian Heuristic [72, Chapter 2, Definition 8] “predicts” that the number of points
of L ∩ C is roughly vol(C)/vol(L). So we expect vol([−m,m]n)/det(L) = (2m + 1)n/N
solutions. Since we assumed Cl(O) to be cyclic of order (almost) N , we can approximate
the above result with (2m+ 1)n/|Cl(O)|, which is not such a big value if we choose m as
small as possible to get (2m+ 1)n ≥ |Cl(O)|. Since |Cl(O)| ≈ √p, we expect there exist
an ε such that the complexity of a brute force attack is around

2log(|Cl(O)|)−ε = 2log
√
p−ε

6That is, a subset of Zn given by L + v, for some integer lattice L and some v ∈ Zn.
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To verify this result, which in any case is based on non-trivial assumptions, Castryck,
Lange, Martindale, Panny and Renes [15] took primes p, up to 40 bit, and tried to force
the key both with brute force, or by randomly fishing represented by the class group,
and with the sampling proposed in the protocol. The result is encouraging: The second
method only loses a handful security-bits compared to uniform sampling. With the size
of p tested, the min-entropy is at most 4 bits less than a perfectly uniform distribution on
the class group, that is ε ≤ 4. This could change for a larger choice of p, however there
is no reason to think this, as long as we hold m and n so that (2m+ 1)n is not too much
larger than |Cl(O)|.

Meet-in-the-Middle Key Search. A meet-in-the-middle attack is a generic space–time
trade-off cryptographic attack against encryption schemes that rely on performing multi-
ple encryption operations in sequence. It is a known-plaintext attack. We focus on the
well known baby-step giant-step and fit it to our protocol, showing that the resulting time
complexity to lead an attack is O( 4

√
p).

Remark 4.19 (Baby-step giant-step attack). The baby-step giant-step is a meet-in-the-
middle algorithm for computing the discrete logarithm or the order of an element in a finite
abelian group due to Daniel Shanks [82]. The algorithm is based on a space–time trade-
off. It is a fairly simple modification of trial multiplication, the naive method of finding
discrete logarithms. Given a cyclic group G of order n, a generator α of the group and
a group element β, the problem is to find an integer x such that αx = β. The baby-step
giant-step algorithm is based on rewriting x as x = im + j, with m = d

√
n e, 0 ≤ i < m

and 0 ≤ j < m. Therefore, we have:

αx = β ⇐⇒ αim+j = β

⇐⇒ αj = β
(
α−m

)i
The algorithm pre-computes αj for several values of j. Then it fixes α−m and tries all
different values of i in the right-hand side of the congruence above, in the manner of trial
multiplication. It tests to see if the congruence is satisfied for any value of j, using the
pre-computed values of αj . The running time of the algorithm and the space complexity
is O(

√
n), much better than the O(n) running time of the naive brute force computation.

Since a private key [a] = [le11 · · · lenn ] trivially decomposes as the product of two smooth
ideals generated by two subsets of the starting ideal (for example, for some k ∈ {1, ..., n},
we can take [le11 · · · lenn ] = [le11 · · · l

ek
k ] · [lek+1

k+1 · · · l
en
n ]) the classic trade-off provided by the

baby-step giant-step applies. The resulting time complexity is O(
√
|Cl(O)|) ≈ O( 4

√
p). It

is possible to provide a graphical interpretation for this algorithm: this is in fact equivalent
to find a path between the curve E and [a]E in the corresponding isogeny graph, building
a breadth-first tree from each one, and looking for a collision, as shown in Figure 4.5.

.
.

.

.
.

E [a]E

E′′

Figure 4.5: The meet-in-the-middle attack.
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Pohlig-Hellman-Style Attack. The Pohlig–Hellman algorithm, sometimes credited
as the Silver–Pohlig–Hellman algorithm, is a special-purpose algorithm for computing
discrete logarithms in a finite abelian group whose order is a smooth integer [77].

Remark 4.20 (Pohlig-Hellman attack). Given as input a finite cyclic abelian group G
of order n with generator g, an element h ∈ G, and a prime factorization n =

∏r
i=1 p

ei
i ,

the Pohlig-Hellman algorithm solves the discrete logarithm gx = h in the following way.
Thanks to the classification of finite abelian groups, G ∼=

∏
i Zpeii , so we can project g

and gx over each peii -subgroup of G. The relative sub-problem is then solved, and finally
the original solution is reconstructed with the Chinese remainder theorem. The worst-
case input for the Pohlig–Hellman algorithm is a group of prime order: In that case, it
degrades to the baby-step giant-step algorithm, hence the worst-case time complexity is
O(
√
n). However, it is much more efficient if the order is smooth: Specifically, if

∏
i p
ei
i is

the prime factorization of n, then the complexity of the algorithm is

O

(∑
i

ei(log n+
√
pi)

)
group operations. For this reason in classical algorithms, which could be weak to an attack
of this type, it is always required that the group G contain at least one cyclic large order
subgroup.

We observe that in our case the group we are acting on, namely Ell(O, π), does not
form a group whose operations are compatible with the action of the class group Cl(O),
therefore there seems to be no way to apply a Pohlig-Hellman style algorithm and exploit
the decomposition of finite abelian groups. In fact, the Pohlig-Hellman algorithm is based
on the existence of an efficiently computable morphism towards some subgroups, which in
our case would result in a morphism that projects a given curve on the orbit of E0 under
the action of a subgroup of Cl(O). Due to the impossibility of carrying out an attack of
this type, the structure of the class group is not really relevant7, in particular we do not
require it to have a large-prime subgroup.

Quantum Security

We now present the state of quantum algorithms to solve the key recovery problem.

Remark 4.21 (The query model). The query model is a computational model particularly
suitable for analyzing quantum algorithms. Essentially we get a black-box function f and
have to answer a question about it. Instead of measuring the time complexity of our
algorithm, we measure the query complexity: the number of queries it makes to f . Why
do we use the query model? Should not we only care about how much time an algorithm
takes? It turns out that the query model has several advantages:

• It is simple to analyze.

• Often, the query complexity of an algorithm is the same as its time complexity. That
is to say, often the function f is efficient to implement, and often the non-oracle parts
of an algorithm are also efficient.

• All known interesting quantum algorithms fit in the query paradigm (for example,
Shor’s factorization algorithm is really a special use-case of a general period-finding
query problem, but also Grover’s algorithm and the hidden shift problem).

7Assuming it is big enough, anyway.
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Grover’s Algorithm and Claw Finding There is an easy exponential attack against
our cryptosystem that improves upon exhaustive search [52], it lays on the claw finding
problem and it leads to an attack on CSIDH with time complexity O( 6

√
p).

Definition 4.22 (Claw finding problem). Given two functions f : A→ C and g : B → C
with domain of equal size, the claw problem consist in finding a pair (a, b) such that
f(a) = g(b).

The claw problem can obviously be solved in O(|A| + |B|) time and O(|A|) space on a
classical computer by building a hash table holding f(a) for any a ∈ A and looking for hits
for g(b) where b ∈ B. With a quantum computer, one can do better using the algorithm
in [90], which has complexity O( 3

√
|A||B|).

The attack has been presented for the first time against SIDH, and in this case it works as
follows. To find an isogeny of degree leAA between E and EA, an attacker builds two trees

of all curves isogenous to E (respectively, EA) via isogenies of degree l
eA/2
A . Once the trees

are built, the attacker tries to find a curve lying in both trees. Since the degree of the
isogeny ϕA is around

√
p (much shorter than the size of the isogeny graph), it is unlikely

that there will be more than one isogeny path (and thus more than one match) from E
to EA. This problem can be seen as an instance of the claw finding problem described

above, therefore it can be solved with a classical computer in O(l
eA/2
A ) = O( 4

√
p). With a

quantum computer, the complexity comes down to O(l
eA/3
A ) = O( 6

√
p) operations. Clearly

the same kind of attack can easily be applied to CSIDH.

We observe that the classical subexponential attacks presented in the previous sections
had already induced us to choose the parameter p large enough to withstand these threats.
The size of p is quite large to protect us also against this latest attack. For example, sup-
pose we want a scheme with 128-bit security for a quantum computer: an AES-128 key
can be broken with 264 quantum oracle queries, which would require us to instantiate
CSIDH with p > 26·64 = 2384. However we choose p much larger than this magnitude.

The Abelian-Hidden-Shift Problem

Definition 4.23 (Abelian hidden shift problem). Let A be a finite abelian group, T a
finite set and let f1, f2 : A → T be black-box functions. The functions f1, f2 are said to
hide a shift s ∈ A if f1 is injective and f2(x) = f1(xs) for all x ∈ A. The goal is then to
recover s by evaluating the functions f1 and f2.

Childs-Jao-Shoukharev observed that construct an isogeny between E0 and EA := [a]E0

can be easily formulated as an abelian hidden shift problem by defining the two functions
f1, f2 : Cl(O) → Ell(O) such that f1([b]) := [b]E0 and f2([b]) := [b]EA. Note that a
solution [s] to this problem implies that EA = [1]EA = f2([1]) = f1([1s]) = [s]E0, that is
EA = [s]E0. The hidden shift problem has suffered several attacks:

• Kuperberg [58] is the first that shows an algorithm capable of solving the hidden
shift problem in a generic group H of order N with time, space and query complexity
of 2O(

√
logN). He also shows that each abelian hidden shift problem can be traced

back to a dihedral hidden subgroup problem.

• Regev [79] shows a subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space, in particular time and query complexity are upper
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bounded by 2O(
√

logN log logN). In this way we use less space, but we have worse time
and query complexity.

• A follow-up algorithm by Kuperberg [59] uses 2O(
√

logN) time, queries and classical
space, but only O(logN) quantum space.

All these algorithms have subexponential time and space complexity. However, we observe
that, beyond the number of estimated queries in the algorithms above, every single query
requires evaluating the functions f1, f2 on arbitrary classes8 of Cl(O), which is non-trivial.
The time complexity of the algorithm must therefore take into account this important
factor. Childs-Jao-Shoukharev show this can be done in subexponential time and space
[17].

Remark 4.24. An important remark about all these quantum algorithms is that they
do not immediately lead to estimates for runtime and memory requirements on concrete
instantiations with H = Cl(O). Furthermore the algorithms by Kuperberg and Regev are
shown to have subexponential complexity in the limit, and this asymptotic behavior is
not enough to understand the space and time complexity on actual (small) instances. For
example, Kuperberg’s first paper [58, Theorem 3.1] mentions O(23

√
logN ) oracle queries

to achieve a non-negligible success probability when N is a power of a small integer. He

also presents a second algorithm that runs in O(3
√

2·log3N ) = O(21.8
√

logN ) [58, Theorem
5.1] (however the algorithm works with a generic group structure and does not compute a
more accurate result). Of course, this does not contradict the time complexity of 2O(logN)

as stated above, but for a concrete security analysis the hidden constants certainly matter
a lot and ignoring the O typically underestimates the security.

Here we study in detail the complexity of quantum algorithms to solve the key recovery
problem. We join the approaches presented above to solve the HSP, and the Childs-Jao-
Shoukharev algorithm. We recall that by definition La[1/2, b] := exp

[
(b+ 1)

√
ln a ln ln a

]
.

• Childs-Jao-Shoukharev [17, Remark 4.8] show that Regev’s algorithm, for solving
D-HSP, has a query complexity of

LN [1/2,
√

2] = exp

[
(
√

2 + 1)
√

lnN ln lnN

]
(4.2)

where N = |Cl(O)|. They also present two algorithms to compute the isogeny oracle,
the fastest of which has been implemented by Bisson [8], and has a time complexity
of

Lp[1/2, 1/
√

2] = exp

[
(1/
√

2 + 1)
√

ln p ln ln p

]
(4.3)

Childs-Jao-Shoukharev compute the total cost to solve the key recovery problem
as Lp[1/2, 3/

√
2]. Almost certainly, this result has been achieved multiplying (4.2)

and (4.3) and imposing N ≈ p. However, since N ≈ √p, this turns out to be an

overestimation, and the total complexity should be revisited as Lp[1/2, 1 +
√

2].

We observe that, even if the space complexity of Regev’s algorithm is polynomial,
Galbraith and Vercauteren [37] show that this algorithm (Regev + Bisson) has su-
perpolinomial space complexity, and this is due to the high memory usage in the
computation of the isogeny oracle. We refer to [53] for further details.

8That is, without being given a representative that is a product of ideals of small prime norm.
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• Childs-Jao-Shoukharev also compute the total complexity that would occur with
joining Kuperberg and Bisson’s methods; the result is Lp[1/2, 1/

√
2]. This method

requires superpolinomial storage (also before considering the space required by the
oracle). We observe that in this case the computational cost of the isogeny oracle
dominates asymptotically.

As we have noted above, it is important to mention that asymptotically worse algo-
rithms may provide practical improvements on our small instances over either of the
algorithms studied by Childs–Jao–Soukharev: for example, Couveignes [23, Chapter 5]
provides heuristic arguments that one can find smooth9 representatives of ideal classes by
computing the class-group structure (which can be done in polynomial time on a quan-
tum computer [45]) and applying a lattice-basis-reduction algorithm such as LLL [63] to
its lattice of relations. This might be more efficient than using Childs–Jao–Soukharev’s
subexponential oracle. However, note that this method makes evaluating the oracle sev-
eral times harder for the attacker than for legitimate users, thus immediately giving a
few additional bits of security, since users only evaluate the action of very smooth ideals
by construction. Further research in this direction is necessary and important, since it
will directly impact the cost of an attack, but we consider a detailed analysis of all these
algorithms and possible trade-offs to be beyond the scope of this work.

Recent Attacks There have been several independent attempts to violate CSIDH after
its first publication. We report a few of them.

• A recent article by Biasse, Iezzi and Jacobson [7] describes how to optimize the com-
putation of the action of an element of the class group, and how to represent the
elements of this group as a product of small prime ideals. In particular, they describe
two algorithms to compute an isogeny between two elliptic curves E1, E2, defined
on the same finite field and with the same endomorphism ring O. With the ap-
proximation that |∆| ≈ p, the first algorithm has a running time of 2O(

√
p), it needs

polynomial quantum memory and 2O(
√
p) quantumly accessible classical memory.

The second algorithm, which is based on a variant of Regev’s Algorithm, has exe-
cution time Lp[1/2, 1/

√
2], and requires polynomial space (classical and quantum).

The analysis proposed in this paper is uniquely asymptotic, and a more precise study
regarding its complexity is explicitly left to future work.

• Bonnetain and Schrottenloher [9] take up the Kuperberg algorithm (the faster of
the two). The basic idea is to ignore the space complexity of the algorithm, which
would make it impracticable, and take into account only its time complexity. The
estimated number of oracle queries is (5π2/4)21.8

√
logN , where the factor 1.8 appears

as an approximation of
√

2 log 3 in Kuperberg. Bonnetain-Schrottenloher estimate
the number of qubits needed to implement this algorithm, i.e. the space complexity,
such as 21.8

√
logN+2.3. For small instances of N , as for example CSIDH-512, the num-

ber of qubits just described might be physically achievable, however in these cases
the overall complexity of the algorithm is dominated by the high computational cost
of the oracle, which Childs–Jao–Soukharev placed at Lp[1/2, 1/

√
2]. To avoid this,

Bonnetain-Schrottenloher do not use the method proposed by Childs–Jao–Soukharev,
but take use the LLL-based method described by Couveignes, applying BKZ for a
more efficient lattice-basis reduction. The Bonnetain-Schrottenloher attack is corre-
lated with complexity estimates for CSIDH instantiation parameters, for which the

9In any case, not as smooth as the ones used by the participants of the protocol.
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CSIDH-512 instance would not meet the NIST-1 security specifications. Unfortu-
nately these estimates ignore a big part of the computational effort and therefore,
although this attack is a significant improvement over the previous ones, this does
not affect CSIDH’s security claim when accounting precisely for the actual cost of
oracle queries. In particular

– Algorithm 2 makes heavy use of input-dependent branches, which is impossible
in superposition.

– The algorithm skips finding points of order li, which are needed as the kernel
of the li-isogeny.

– The computational estimate applies a result for multiplication costs in F2n to
multiplications in Fp.

Therefore Bonnetain-Schrottenloher estimates do not imply that CSIDH-512 is bro-
ken under NIST-level 1. More analysis is certainly needed and it is unclear whether
that will result in larger or smaller choices of p. In the estimates that we present
in the next section we keep this attack in mind, with the theoretical complexity
described by the original article.

Instantiations

Here are some estimates for CSIDH instances with a fixed size of p.

Security Estimates The basic idea is to instantiate the attacks defined above. We
consider the best classical attack, which we have shown to have complexity O( 4

√
p). For

quantum attacks, we consider Regev and Kuperberg’s approaches (which have complexity
of LN [1/2,

√
2], O(23

√
logN ) and O(21.8

√
logN ), joined with Childs-Jao-Shoukharev (for an

overall complexity of Lp[1/2, 3/
√

2] and Lp[1/2, 1/
√

2]).
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CSIDH-512 128 62 48 29 32.5 139 47 71
CSIDH-1024 256 94 68 41 44.5 209 70 88
CSIDH-1792 448 129 90 54 57.5 288 96 104

Table 4.5: Estimated attack complexities ignoring limits on depth. The three rightmost
columns state costs for the complete attack; the others state classical and quandum query
complexities. All numbers are rounded to whole bits and use N = |Cl(O)| = √p, o(1) = 0
and all hidden O-constant 1.

The results we present do not take into account any memory costs, and we do not bother
to limit the maximum depth of quantum circuits. We stress that these results should be
subjected to more in-depth analysis, which take into account the implicit constants, the
non-feasibility of performing a long sequence of quantum operations, and the immense
memory requests. Also, we emphasize that a recent analysis [1] shows that a classic attack
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on SIDH (it is the same attack on CSIDH) is much slower in practice than in theory.
This is due to the immense amount of memory used in the computation. Similarly, the
cost of a quantum attack is higher than the theoretical one obtained as the product of
query complexity times the cost of the group action because evaluating the oracle in
superposition is significantly more expensive that a regular group action.

Remark 4.25. Observe that a public key of CSIDH consists of an element A ∈ Fp, and
therefore can be represented with dlog pe-bit. It is also possible to estimate the size of a
private key (e1, ..., en). Indeed, as we have seen before, n log (2m+ 1) ≈ log

√
p, so that

n · logm ≈ n · log (2m+ 1) ≈ log
√
p = (log p)/2

from which it immediately follows that the size of the private key is, with good approx-
imation, (log p)/2. Consequently, with reference to Table 4.5, the respective public keys
have a size of 64, 128 and 256 bytes, while private keys are approximately half the size of
the public keys listed above.

Security Levels We briefly recall the security specifications for post quantum algo-
rithms, as they are defined by NIST, after which we verify the security of CSIDH.
Recall that a k-bit security level means that the best attack is at least as difficult as
performing a key-retrieval attack on a block cipher with a k-bit key, for example AES-k
for k ∈ {128, 192, 256}. This request is equivalent to ask that, under the assumption that
the attacks query an oracle on a circuit at least as costly as AES10, we should have a

query complexity of at least 2k−1 to a classical oracle, and 2
√
k to a quantum oracle. The

following table summarizes the security levels of a given protocol, as established by NIST.

Level Security description

1 At least as hard to break as AES-128 (exhaustive key search)
2 At least as hard to break as SHA-256 (collision search)
3 At least as hard to break as AES-192 (exhaustive key search)
4 At least as hard to break as SHA-384 (collision search)
5 At least as hard to break as AES-256 (exhaustive key search)

Table 4.6: Security strength categories, as defined by NIST, which asked submitters to
focus on levels 1, 2, and 3 (levels 4 and 5 are for high security).

The parameters p of CSIDH-log p presented in Table 4.5 are chosen to match the query-
complexity of Regev’s attack on the hidden shift problem (check the third column of the
table) for more or less 2k/2, in order to match the levels 1, 3, 5 proposed by NIST, under
the assumption that the computation of the group action has depth at least as large as
that of AES.

Observe that adjusting the cryptosystem parameters consists essentially to change p, which
is very simple. Therefore, in the case that the safety estimates above were not sufficient,
we can quickly readjust the protocol so that it regains its security.

4.3.5 Implementation

Let us now discuss the low-level implementation.

10In our setting: the group action computation has depth at least as large as AES.
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Montgomery Curves

Proposition 4.16, together with the request p + 1 ≡ 4 (mod 8) implies that all curves in
Ell(Z[π], π) are Fp-isomorphic to a curve in Montgomery form, i.e. y2 = x3 + Ax2 + x,
for some A ∈ Fp. We have already observed how this parameterization offers particularly
efficient arithmetic on the x-line. These advantages also extend to the computation of
isogenies, as shown in [21]. The implementation we describe uses curves in Montgomery
form, and for isogeny computation uses a projectivized variant of the formulæ described
in [19] and [80]. We work with projective spaces to avoid almost all inversions.

Suppose we want to compute an isogeny of degree l ≥ 3. We first find a point P of
order l. Then, defining (Xk : Yk : Zk) := [k]P , for each k ∈ {1, ..., l − 1}, for [80] we have
that the Montgomery coefficient of the image curve of E, under the action of an isogeny
with kernel 〈P 〉 is given by τ(A− 3σ), where

τ =

l−1∏
i=1

Xi

Zi
, σ =

l−1∑
i=1

(
Xi

Zi
− Zi
Xi

)

it is possible to compute this result more quickly, indeed by defining ci ∈ Fp in such a way
that

l−1∏
i=1

(Ziw +Xi) =

l−1∑
i=0

ciw
i (4.4)

we observe that

τ(A− 3σ) =

l−1∏
i=1

Xi

Zi

(
A− 3

l−1∑
i=1

(Xi

Zi
− Zi
Xi

))

= A ·
l−1∏
i=1

Xi

Zi
− 3 ·

l−1∏
i=1

Xi

Zi

( l−1∑
i=1

(Xi

Zi
− Zi
Xi

))

=

( l−1∏
i=1

Zi

)−2[
A

( l−1∏
i=1

Zi

)( l−1∏
i=1

Xi

)
− 3

( l−1∏
i=1

Zi

)( l−1∏
i=1

Xi

)( l−1∑
i=1

(Xi

Zi
− Zi
Xi

))]
= (?)

We observe at this point that, by the contruction of (4.4),
∏
i Zi = cl−1. On the other

hand
∏
iXi = c0. Furthermore

∑
i

(
Xi
Zi
− Zi

Xi

)
=
∑

i
Xi
Zi
−
∑

i
Zi
Xi

, and
∑

i(
Zi
Xi

) = c1∏
iXi

= c1
c0

;

similarly
∑

i(
Xi
Zi

) =
cl−2

cl−1
and therefore

(?) = c−2
l−1 ·

[
Ac0cl−1 − 3 · c0cl−1

(cl−2

cl−1
− c1

c0

)]
= c−2

l−1 ·
[
A · c0cl−1 − 3 ·

(
c0cl−2 − c1cl−1

)]
Beyond that, since x([k])P = x([l − k]P ) for each k ∈ {1, ..., (l − 1)/2}, we can reduce
the computation necessary to evaluate the points (Xk : Zk) by about half. With these
premises it is possible to show that the computational effort required to compute τ(A−3σ)
is 5lM + lS operations11.

11M e S denote respectively a multiplication and a squaring in Fp.
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Evaluating the Class Group Action

We show how evaluating the class group action can be made more efficient. Recall that
the purpose is to evaluate the action of an element of the class group of the form [le11 · · · lenn ]
on a curve EA ∈ Ell(Z[π], π) of the form y2 = x3 + Ax2 + x, where each li = (li, π − 1)
is a prime ideal of small odd norm li, and all the ei are integer sampled in the range
{−m, ...,m}. We propose two approaches.

• The most natural way to do this is to consider every single factor l±1
i , find the

abscissa of a point P of order li on E, which will be (depending on the sign of the
exponent of li) defined over Fp or Fp2 . The existence of such a point is guaranteed
to us by our constructive choices of p and li. To find such a point it is sufficient to
randomly sample a coordinate in Fp, check if x3 +Ax2 +x is a root in Fp (in case we
are working with l+1

i , then we require that x3 + Ax2 + x is a root in Fp, otherwise
we will require the opposite, which is a root in Fp2 \ Fp). At this point we perform
a scalar multiplication of the result found by (p+ 1)/li, and check that the result is
not the neutral element O. In this case we repeat the whole operation.

We observe an important fact: if P ∈ E(Fp) then necessarily [(p + 1)/l]P ∈ E(Fp),
but if P ∈ E(Fp2) \ E(Fp), are we sure that [(p + 1)/l]P ∈ E(Fp2) \ E(Fp)? This
result is true, and follows from the fact that E(Fp2)\E(Fp) = ker(π+1)\{O}. Since
ker(π + 1) is a subgroup, we obtain that [(p + 1)/k]P ∈ ker(π + 1). The only case
in which this point falls to the ground group E(Fp) is because it has been mapped
to the neutral element, but this case is automatically discarded by the algorithm
that we have just described. At this point the isogeny kernel can be computed using
Vélu’s formulæ. Repeating the result for all l±1

i gives us the desired result.

We observe that this method has some notable disadvantages: fixing the sign of
the exponent before sampling points implies limiting ourselves to consider about
half of the points (in addition, to realize that a point is not suitable, we also have
to do a square-test). Also, decide which prime li to use before sampling leads to
exclude other points (again, to realize that a point has order different from li we
should do a square-test and a scalar multiplication for (p + 1)/li). Let us see how
the next algorithm allows to mitigate these problems.

• The second method we present does not fix a prime li a priori. On the contrary, we
take a generic coordinate x ∈ Fp, we determine if x3 + Ax2 + x is an element of Fp
or Fp2 , and use this element to compute as many isogenies as possible.

In detail, as shown in Algorithm 2, after randomly choosing an element x ∈ Fp,
we denote with s the sign of the exponent. We stress that in the case s = 1 then
the point is defined over Fp, vice-versa it is defined over Fp2 . Let us now take into
account all the indices ei that have a sign compatible with that of s and enclose all
these values into a new variable S. At this point we enclose in k the product

∏
i∈S li

of all the orders that are fine for our choice of x . Therefore we set Q = [(p+1)/k]P .
As shown above, asking that P lies in E(Fp) is equivalent to ask that Q lies in
E(Fp), and asking that P lies in E(Fp2) \ E(Fp) is equivalent to ask that Q lies in(
E(Fp2) \ E(Fp)

)
∪ {O}. At this point we try to see if there is any order li that fit

our point: we compute R = [k/li]Q and we verify that it is not the neutral element.
In this case 〈R〉 is the kernel of an isogeny of degree li, and is already oriented with
respect to the sign of the exponent of the ideal li (in the sense that if the exponent
has a negative sign, then surely R is a point of E(Fp2) \E(Fp), and vice versa if the
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exponent has a positive sign, then surely R is an element of E(Fp2)). At this point
we compute the image curve, and also the image of Q, trying to reuse it as long as
we can.

Algorithm 2 Evaluating the class group action

Input A ∈ Fp and a list of integers
Output B such that [le11 · · · lenn ]EA = EB, where EB : y2 = x3 +Bx2 + x.

1: function evalGroupAction(A, e1, ..., en)
2: while some ei 6= 0 do
3: sample a random x ∈ Fp.
4: if x3 +Ax2 + x is a square in Fp then s← 1
5: else s← −1

6: Let S := {i|ei 6= 0, sign(ei) = s}.
7: if S = ∅ then start over with a new x
8: else
9: Let k ←

∏
i∈S li and compute Q← [(p+ 1)/k]P .

10: for each i ∈ S do
11: Compute R← [k/li]Q
12: if R = O then skip this i.

13: Compute the map ϕ : EA → EB : y2 = x3 +Bx2 + x with ker(ϕ) = 〈R〉.
14: Set A← B, Q← ϕ(Q), k ← k/li and finally ei ← ei − s.

Thanks to the commutativity of Cl(O), and since the absolute value of each ei decreases
from time to time, the algorithm ends with the computation of [le11 · · · lenn ]E.

We observe that, since the probability that a random point has order divisible by li
(which therefore leads us to have an isogeny in the above algorithm) grows with li, the
isogeny steps for large li are typically computed before those associated with small li.
Among the various solutions that have been proposed to this problem, one suggests not to
include any small li in the factorization of p+ 1, in order to reduce the expected number
of unnecessarily repeated cycles.

Remark 4.26. Algorithm 2, when implemented naively, is strongly variable-time. This
is due to the fact that the number of cycles that the algorithm performs is directly linked
to the degree of the isogeny we are trying to compute. It would not be difficult to create a
constant time implementation: it would be enough to use the same algorithm, but always
execute all the commands of each cycle, storing only useful results. This would lead to
an algorithm that performs more operations than necessary and we leave the study of an
optimized constant-time algorithm for future work.

Key Validation

In a previous section we introduced an algorithm for a public key validation, which com-
putes [(p + 1)/li]P for each i ∈ {1, ..., n}, where P is a random point of E. It is possible
to improve the efficiency of this algorithm by introducing a recursive variant, described
below with Algorithm 3.
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Algorithm 3 Batch cofactor multiplication [89, Algorithm 7.3]

Input An Elliptic curve point P and positive integers (k1, ..., kn).
Output The points (Q1, ..., Qn), where Qi = [

∏
j 6=iQj ]P .

1: function CofactorMultiplication(P, k1, ..., kn)
2: if n = 1 then return P .
3: Set m← dn2 e and let u←

∏m
i=1 ki, v ←

∏n
i=m+1 ki.

4: Compute L← [v]P and R← [u]P .
5: Recurse with input L, (k1, ..., km) giving (Q1, ..., Qm).
6: Recurse with input R, (km+1, ..., kn) giving (Qm+1, ..., Qn). return (Q1, ..., Qn).

We observe that, similarly to its precursor, this algorithm only works on public parame-
ters, and therefore need not to be constant-time in a side channel resistant implementation.
We show how this algorithm is useful to us, that is, how it can be used to verify whether
a curve is supersingular or not. The basic idea is that we still use Algorithm 2, but we
exploit the pre-computed points with this new algorithm just described.

We first choose a random point P ∈ E(Fp) and run Algorithm 3 with input [4]P and
(l1, ..., ln) in order to obtain the sequence (Q1, ..., Qn) with Qi = [(p+1)li]P . At this point
can we run Algorithm 2 to verify that E is supersingular.

We observe that it is not necessary to run Algorithm 3, wait for it to return all points
Q1, ..., Qn, and then proceed to the various checks, in fact the order check of Algorithm
2 can be performed as soon as a new point Qi becomes available, i.e. in the base case
of Algorithm 3. This reduces the overall memory usage, since each point Qi is discarded
immediately after use, it also decreases the total execution time, since it ends when it has
collected enough information.

Remark 4.27. Compared to Algorithm 2, the combined action of these two algorithms
essentially comes from a space-time trade-off. It is natural to think that the second
algorithm is the most suitable to implement, and this is generally true, however on severely
memory-constrained devices one may instead opt for the naive algorithm, which requires
less space but is slower.

Performance

We now present a proof-of-concept implementation for CSIDH for a 512-bit prime p. The
implementation we refer to is the one provided by the authors of the protocol themselves12.

Remark 4.28. Although the implementation we refer to uses a 512-bit field arithmetic
written in assembly, more specifically for a Skylake processor, the program also contains
some generic C code, which supports other field-sizes. In this way the program can also
be run on different computer architectures or with different parameter-sizes, if we wish so.

The implementation we present uses p = 4 · l1 · · · l74 − 1, where the primes l1, ..., l73 are
the 73 smallest odd primes, and l74 is the smallest odd prime such that 4 · l1 · · · l74 − 1
is prime. We can verify that l74 = 587. The parameters choice immediately implies (as
we had already observed) that the size of the public key is 64 bytes. Private keys are
stored in 37 bytes for simplicity, however an efficient version may come to store their

12All code is published in the public domain and is available for download at
https://yx7.cc/code/csidh/csidh-latest.tar.xz.
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information in 32 bytes. Table 4.7 summarizes the proof-of-concept implementation we
have just described.

Clock cycles Wall-clock time Stack Memory

Key validation 5.5 · 106 cc 2.1 ms 4368 bytes
Group action 106 · 106 cc 40.8 ms 2464 bytes

Table 4.7: Performance number for the described proof-of-concept implementation, aver-
aged over 10000 runs on an Intel Skylake i5 processor clocked at 3.5 GHz.

We have not taken into account the execution times for generating the private key as
this only consists in sampling n random integers in the range {−m, ...,m}, which has
a negligible cost. However, the original authors emphasize that this implementation is
intended only as a proof-of-concept, in particular it is not side-channel resistant and may
contain some bugs. The design of hardened and more optimized implementations are left
for future work. This proof-of-concept implementation carries out a non-interactive key
exchange at a presumed classical security level of 128 bits and a conjectured post-quantum
security level of 64 bits in about 80 milliseconds, while using key sizes of only 64 bytes. This
is over 2000 times faster than the current state-of-the-art instantiation of the Couveignes-
Rostovtsev-Stolbunov scheme by De Feo, Kieffer and Smith [27, 54], which itself presents
many new ideas and speedups to even achieve that speed. For comparison, we remark
that SIDH, which is the NIST submission with the smallest combined key and ciphertext
length, uses public keys and ciphertexts of over 300 bytes each. More precisely SIKE’s
version p503 uses uncompressed keys of 378 bytes long [51] for achieving CCA security.
The optimized SIKE implementation is about ten times faster than this proof-of-concept
C implementation, but even at 80 ms, CSIDH is practical. Consider in this regard Figure
4.6, where we denoted the execution time of the major Nist PQC candidates, dividing
their key-generation, encryption and decryption execution time.

SI
K
Ep4

34

M
cE

lie
ce

34
88

64

B
IK

E1-
LEV

EL
1

H
Q
C
-1

28
-1

N
T
R
U
Prim

e-
sn

tr
up

65
3

K
yb

er
51

2

Lig
ht

Sa
be

r

Fr
od

oK
EM

-6
40

102

103

104

105

T
h
ou

sa
n
d
s

of
cy

cl
es

KeyGeneration
Encryption
Decryption

Figure 4.6: Speed - PKE/KEMs for NIST level 1

Remark 4.29. The first round SIKE submission offered three different security levels
known as SIKEp503, SIKEp751, andSIKEp964. According to the best known quantum
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attacks on solving supersingular isogeny problem by that time, the proposed security levels
met NIST’s level 1, 3, and 5 requirements, respectively. However, recent studies on the cost
of solving isogeny problem on quantum computers revealed that the security assumptions
for SIKE was too conservative. Accordingly, the second round SIKE offers a new set of
security levels which are more realistic and provide significant improvement on the key
encapsulation performance, decreasing the bit length of SIKE’s primes to 434, 503, and
751-bit. This is the reason for which we find different notations in literature.

To conclude: CSIDH speed is practical while the public-key size is the smallest for key
exchange or KEM in the portfolio of post-quantum cryptography. This makes CSIDH par-
ticularly attractive in the common scenario of prioritizing bandwidth over computational
effort.

4.3.6 Conclusions

An order O of a quadratic field K is a subring O ⊆ OK that is also a free Z-module of
rank 2 = [K : Q]. The notion of ideal of O can be generalized to fractional ideals, which
are sets of the form a = 1

dI where I is an ideal of O and d ∈ O \ {O}. The invertible
fractional ideals form a multiplicative group I, which has a subgroup consisting of all
principal invertible ideals P. The ideal class group is by definition Cl(O) := I/P, so that
in Cl(O) we identify two fractional ideals a, b if there is α ∈ K such that b = (α)a. We
denote the resulting class of the fractional ideal a in Cl(O) as [a]. We have also shown
that the ideal class group is finite and we have called its cardinality the class number of
O.
Given an elliptic curve E on a generic field, we have shown that its endomorphism ring
satisfies Z ⊆ End(E). For elliptic curves defined on a finite field, we know that Z (
End(E). In this particular case the complete endomorphism ring End(E) is either an order
in an imaginary quadratic field (in the case of ordinary curves) or an order in a quaternion
algebra ramified at p and ∞ (in the case of supersingular curves). We have also shown
that, when a supersingular curve is defined over Fp, the ring of its Fp-endomorphisms is
isomorphic to an imaginary quadratic order, exactly as in the ordinary case.
We have seen that the endomorphism ring of an elliptic curve plays a crucial role in most
algorithms for computing isogenies between curves. The class group of End(E) acts transi-
tively on isomorphism classes of elliptic curves, which share the same endomorphism ring.
More precisely, the class of an ideal a ⊆ O acts on the isomorphism class of a curve E with
End(E) ∼= O through an isogeny of degree N(a). Likewise, every isogeny ϕ : E → E′,
where End(E) = End(E′) ∼= O, corresponds (up to isomorphisms) to the class of some
ideal in O. We have shown it is possible to compute the action of an ideal in Cl(O) on a
given curve: given an ideal a and the l-torsion subgroup of E (where l = N(a)), we can get
the kernel of ϕ, and then we can derive the corresponding isogeny using Vélu’s formulæ.
We denote by [a]E the action of the ideal class of a on the isomorphism class of E. The
typical strategy to evaluate the action of [a] is to break it down as a product of classes of
primary ideals of small norm, and evaluates the action of each prime ideal as l-isogenies.
This strategy was first described by Rostovtsev and Stolbunov.

Couveignes suggested to use Ellq(O) as an instance of a hard homogeneous space: the
system parameters are a starting curve E/Fq, and the associated class group Cl(O); the
secret keys are random elements of Cl(O), and public keys are j-invariants of curves in
Ellq(O). However, given a generic element of Cl(O), the best algorithm to evaluate its
action on Ellq(O) has subexponential complexity in q, making the protocol infeasible. In-
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stead, following Rostovtsev and Stolbunov, we may define a variant of Couveignes’ HHS
key exchange based on walks in a Cayley graph for Cl(O). The instantiation using a
Schreirer graph of the HHS Ellq(O) yields a usable variant of Couveignes’ key exchange,
but even with these adjustments, the protocol is still far from practical: Stolbunov man-
aged to run a 108 bit secure implementation in around 5 minutes. Furthermore, Childs,
Jao and Soukharev managed to reduce the CRS scheme to an instance of the well known
abelian hidden-shift problem, for which subexponential quantum algorithms are known.
Altough this represents a negative point for the protocol, its biggest limitation remains its
inefficiency. Some later implementations, mainly due to De Feo, Kieffer and Smith, have
improved the efficiency of this scheme, but several minutes are still needed for a single key
exchange at a presumed classical security level of 128 bits.

These critical issues lead Jao and De Feo to define a protocol based on isogenies of supersin-
gular curves, for which the corresponding endomorphisms ring is an order in a quaternion
algebra, and therefore is non-commutative. The main technical idea is that we transmit
the images of torsion bases under the isogeny in order to allow the parties to construct a
shared commutative square despite the non-commutativity of the endomorphism ring. In
the supersingular case, by contrast, the best known classical and quantum attacks against
the underlying problem are both exponential in the size of the underlying finite field, since
the non commutativity of the endomorphism ring means that the approach used in the
ordinary case does not apply. The result is the scheme that goes by the name SIDH, and
the price is the loss of a drop-in replacement for the pre-quantum Diffie-Hellman: first of
all we lose the symmetry between Alice and Bob, whose roles are no longer interchange-
able, and also now we share much more information than we were used to with a normal
Diffie-Hellman style key exchange.

We have shown how to adapt the Couveignes-Rostovtsev-Stolbunov scheme so that it
constitutes a feasible protocol. The basic idea is to use the family of supersingular elliptic
curves defined over Fp, for which the respective endomorphism ring, restricted only to
maps defined on Fp, it is still isomorphic to an order in an imaginary quadratic field.
For this reason, these curves behave like ordinary curves, and the Couveignes-Rostovtsev-
Stolbunov protocol carries over without modification. However, the fact that these curves
necessarily have order p + 1 makes it extremely simple to control their group structure
and class group size by appropriately choosing p from within the desired range. This
close control means that we can force all of the small primes to be Elkies primes with
λ = 1, which results in a speedup that beats ordinary-curve constructions by orders of
magnitude. Compared to SIDH, with CSIDH we regain public-key validation and do not
publish more extra points than we would expect for a Diffie-Hellman style protocol. Re-
garding classical and quantum attacks against this scheme, we have shown that the best
classical attack has complexity O( 4

√
p), while, for quantum attacks, we have considered

Regev and Kuperberg’s approaches which exploit the reduction of CSIDH to an instance
of the abelian hidden shift problem, and solve it in subexponential time. Clearly the re-
duction to the hidden shift problem alone does not immediately give a subexponential-
time algorithm for computing isogenies, because one must consider the time required to
compute the isogeny oracle: Childs-Jao-Soukharev showed that it is possible to compute
this function in subexponential time and thus obtain a subexponential-time reduction to
the hidden shift problem, joining their approach with the ones described by Kuperberg
or Regev. In particular: Kuperberg’s algorithm for the abelian hidden shift problem uses
superpolynomial space, i.e. a quantum computer with superpolynomially many qubits, so
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the same is true of the most straightforward version of Childs-Jao-Soukharev algorithm.
Since it is difficult to build quantum computers with many qubits, this feature could limit
the applicability of this result. However, Childs-Jao-Soukharev also obtain an algorithm
using polynomial space by taking advantage of an alternative approach to the abelian hid-
den shift problem due to Regev. Regev only explicitly considered the case of the hidden
shift problem in a cyclic group whose order is a power of 2, and even in that case did
not compute the constant in the exponent of the running time. Childs-Jao-Soukharev fill
both of these gaps, showing that the hidden shift problem in any finite abelian group G
can be solved in time L|G|[1/2,

√
2] by a quantum computer using only polynomial space.

With these premises, we have shown that Regev and Kuperberg’s approaches, joined
with Childs-Jao-Soukharev, yield an overall complexity respectively of Lp[1/2, 3/

√
2] and

Lp[1/2, 1/
√

2].

To summarize, CSIDH is a new cryptographic primitive that can serve as a drop-in replace-
ment for the (EC)DH key-exchange protocol while maintaining security against quantum
computers. Up to now we are unaware of any impact on security, negative or positive,
stemming from the use of supersingular curves as opposed to ordinary curves. It provides
a non-interactive (static–static) key exchange with full public-key validation. The speed is
practical while the public-key size is the smallest for key exchange or KEM in the portfolio
of post-quantum cryptography. This makes CSIDH particularly attractive in the common
scenario of prioritizing bandwidth over computational effort, though the development of
efficient side-channel-aware implementations of commutative isogeny protocols remains an
open problem. At the same time we do not have to forget that all these isogeny-based
protocols are more than a decade younger than all other post quantum schemes, so their
security still have to withstand the tests of time and of a wide cryptanalytic effort.
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Appendix A

Quantum Computing

Quantum computers are much more expressive than a normal classical computer: they do
not only perfectly emulate a Turing machine, but also manage to perform some mathemat-
ical operations in much less time than a classical computer. This section has the explicit
task of introducing the reader to the quantum computational model. This is not essential
to understand the thesis, but it provides a more complete picture of the subject we are
dealing with, making the reader more comfortable to compare with the results presented
in the main discussion.

We start by describing the basic unit information on which these computers are based,
namely the qubit; we then describe the way in which it is possible to perform operations
on them, through objects that we will call quantum gates. With these notions we are
able to understand the main quantum algorithms. First we describe the quantum Fourier
transform, which can be computed in polynomial time with respect to the input size1.
This algorithm establishes the basis for building a polynomial algorithm for the phase
estimation2, which in turns allows to solve the order finding problem in a finite group in
polynomial time. Finally, the resolution of the order finding problem allows us to build
an algorithm which solves the factorization problem in polynomial time. We are talking
about Shor’s algorithm.

A.1 Qubit

The quantum information unit is called qubit.

Single Qubit

In classical computer science the information unit is the bit, which can have a value of 0
or 1. Unlike this, the quantum computational model is based on two base states, which
we denote by |0〉 and |1〉, and form an orthonormal system for the states that a qubit
can assume. The value that a single qubit can take is a linear combination with complex
coefficients of these two values, more precisely the value encoded by a single qubit is |ψ〉
given by {

|ψ〉 = ψ0|0〉+ ψ1|1〉
|ψ0|2 + |ψ1|2 = 1

1Note that in the classical case this complexity is exponential.
2That is, an algorithm which estimates the eigenvalues of a matrix with particular features.
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where ψ0, ψ1 ∈ C.

Remark A.1. We do not describe how a qubit is actually implemented, in the same
way as we didn’t bother to describe how a classical bit is implemented, and we content
ourselves only to know how it is modeled. The only thing we consider appropriate to
keep in mind is that such a model is actually physically achievable, for example with the
spin of a photon, which manifests the properties of the quantum mechanics: spin can be
±1 (which our model represents with |0〉 and |1〉) or one superposition of these states (a
non-trivial formulation of ψ0|0〉 + ψ1|1〉). In the exact moment we observe the spin of a
photon, the latter is projected onto one of its fundamental states, and it is precisely this
peculiarity that our model keeps track of, thanks to the request |ψ0|2 + |ψ1|2 = 1, which
we can interpret as follows: the probability that by measuring the spin of a photon we
get 0 is |ψ0|2, conversely, the probability of measuring 1 is |ψ1|2. With these premises the
variables ψ0, ψ1 are also called the probability amplitudes of the states to which they refer,
as they represent the probability that measuring a qubit |ψ〉 we obtain the respective base
state.

When a qubit is not in one of its fundamental states, we say that it is in superposition. It
is important to note that, once the value of a qubit has been measured, all the information
it contained is lost, as its state collapses on a state of the base. This fact is unavoidable
and intrinsic in quantum mechanics.

Multiple Qubits

We describe the case of a 2 qubit system; this case generalizes to an arbitrary number
of qubits in a natural way. In the case of 2 qubit, their measurement will give rise to
4 possible cases, which we identify with |00〉, |01〉, |10〉, |11〉. A system of 2 qubit can
therefore represent a state |ψ〉, with:{

|ψ〉 = ψ00|00〉+ ψ01|01〉+ ψ10|10〉+ ψ11|11〉
|ψ00|2 + |ψ01|2 + |ψ10|2 + |ψ11|2 = 1

We observe that the base states described above, namely |00〉, |01〉, |10〉, |11〉, are just a
way to denote the state that we actually measure. Sometimes for convenience we refer to
these states denoting them respectively with their decimal notation, that is |0〉, |1〉, |2〉, |3〉.

In general a value |ψ〉 encoded with n qubit can be expressed by a computational ba-
sis with 2n states, for example

|ψ〉 =

2n−1∑
k=0

ψk|k〉

The description of a multi-qubit system is intrinsically linked to the notions of Hilbert
space and tensor product, in fact any quantum system of dimension 2n can be associated
to a Hilbert space of dimension 2n. Let us briefly recall that a Hilbert space is a vector
space of finite dimension, with an inner product, complete with respect to the metric in-
duced by the canonical norm. Among the most important properties of Hilbert spaces it
should be remembered that they are unique (up to isomorphisms) for each fixed dimen-
sion, furthermore given two Hilbert spaces V and W , of dimension n and m respectively,
their tensor product V ⊗W , that is the space whose elements are the linear combinations
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of tensor products |v〉 ⊗ |w〉 where |v〉 ∈ V and |w〉 ∈ W , constitutes a new Hilbert space
of dimension nm. Also a base of the new space is given by the tensor products of the
elements of the basis of the starting spaces. Finally, we remember that the tensor product
satisfies the following important properties:

• z(|v〉 ⊗ |w〉) = (z|v〉)⊗ |w〉 = |v〉 ⊗ (z|w〉)

• (|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉

• |v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉

Example A.2. Earlier we have denoted a basis for a 2 qubit system with the elements
|00〉, |01〉, |10〉 and |11〉. For the results just stated, a basis for this space is also given by

|0〉 ⊗ |0〉 =

[
1
0

]
⊗
[
1
0

]
=


1
0
0
0



|0〉 ⊗ |1〉 =

[
1
0

]
⊗
[
0
1

]
=


0
1
0
0



|1〉 ⊗ |0〉 =

[
0
1

]
⊗
[
1
0

]
=


0
0
1
0



|1〉 ⊗ |1〉 =

[
0
1

]
⊗
[
0
1

]
=


0
0
0
1



We will therefore associate the elements |00〉, |01〉, |10〉 and |11〉 to the four elements of the
base described above. We will use these definitions interchangeably, thus choosing each
time the most convenient to use. Clearly this construction applies to spaces of all sizes.

A.2 Quantum Gates

Just like in the classical model, also in the quantum one low-level manipulation of infor-
mation takes place via gates, which are circuits that alter the information encoded inside
each qubit. Since the constraints on the probabilities ψi of each qubit must hold both
before and after the application of a gate, these conditions must be preserved.

Single Quantum Gates

Clearly a gate acting on a single qubit can be represented as a square matrix U of size 2,
in addition to ensure compliance with the above condition, it is necessary and sufficient to
request this matrix to be unitary, that is invertible with inverse U † obtained by conjugating
and transposing U .
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Hadamard Gate. The Hadamard gate is the operator defined by the (unitary) matrix

H =
1√
2

[
1 1
1 −1

]
Furthermore, the matrix that defines this operator is self-adjoint, therefore applying two
times this gate to a qubit leaves the final value unchanged. The representation circuit of
this operator is as follows.

H

Phase gate. The phase operator is defined by the (unitary) matrix

R(δ) =

[
1 0
0 eiδ

]
We immediately notice that the action of this gate leaves the |0〉 state unchanged and
adds a phase factor eiδ to |1〉. The factor phase has modulus equal to one so it does not
influence the probability of the qubit to be in state |1〉. The circuit representation of this
operator is the following.

Rδ

Multiple Quantum Gates

Similarly, a gate acting on n qubits can be represented as a square and unitary matrix U
of dimension 2n.

Controlled operator. Given a generic unitary matrix U ∈ M2n(C), it can be seen as
a quantum gate acting on n qubits. Starting from U we can define a new operator, which
we denote with U c (controlled U), which acts on n+ 1 qubit (the extra qubit is called the
control qubit, the others the target). The operation works as follows: if the control qubit
is zero, then the target qubit are not modified, vice-versa they undergo the action of U .
The circuit representation of this operator is the following

•
U

Swap. Another operator that can be very useful is the SWAP operator, associated with
the matrix

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Its operation is simple: it just swap the value of two qubits. In other words |00〉 7→
|00〉, |01〉 7→ |10〉, |10〉 7→ |01〉, |11〉 7→ |11〉. This operator is described by the following
circuit

×
×
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Quantum Fourier transform. The Fourier transform is undoubtedly the most impor-
tant transformation in the quantum world: on one hand its implementation is much faster
than its classical version, on the other hand it forms the basis of many other quantum
algorithms, first of all the Shor’s one. The classical Fourier transform acts on a vector
(ψ0, ψ1, . . . , ψN−1) ∈ CN and sends it to the vector (ϕ0, ϕ1, . . . , ϕN−1) ∈ CN defined by

ϕj =
1√
N

N−1∑
k=0

ψkω
−jk
N , j = 0, 1, 2, . . . , N − 1,

where ωN = e
2πi
N is a primitive N -th roots of unity. Similarly, the quantum Fourier

transform acts on a quantum state |ψ〉 =
∑N−1

k=0 ψk|k〉 and maps it to another quantum

state |ϕ〉 =
∑N−1

j=0 ϕj |j〉 defined by

ϕj =
1√
N

N−1∑
k=0

ψkω
jk
N , j = 0, 1, 2, . . . , N − 1,

Conventions for the sign of the phase factor exponent vary; here we use the convention
according to which the quantum Fourier transform has the same effect of the inverse
discrete Fourier transform, and vice-versa. For simplicity of notation, in case there is no
ambiguity we will denote the phase factor wN simply by w. It can be shown that the
(unitary) matrix associated with this transformation is

QFT =
1√
N


1 1 1 · · · 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) · · · w(N−1)2

 (A.1)

Its circuit representation is given by

FT

Given the importance of this transform, we show its circuit implementation in detail, in
order to understand why the execution complexity is polynomial. To do this we must first
rewrite the expression QFT (|j〉) for a generic quantum state |j〉 = |j1, ..., jn〉, in such a
way that it is transparent how to implement it with the gates described above. We observe
that thanks to (A.1) we have

QFT(|j〉) =
1√
N

2n−1∑
k=0

ωjk|k〉

=
1√
N

1∑
k1=0

· · ·
1∑

kn=0

ωj
∑n
l=1 kl2

n−l |k1 · · · kn〉

=
1√
N

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

ωjkl2
n−l |kl〉

=
1√
N

1∑
k1=0

· · ·
1∑

kn=0

ωjk12n−1 |k1〉 ⊗
n⊗
l=2

ωjkl2
n−l |kl〉
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=
1√
N

 1∑
k1=0

ωjk12n−1 |k1〉

⊗ 1∑
k2=0

· · ·
1∑

kn=0

n⊗
l=2

ωjkl2
n−l |kl〉

...

=
1√
N

n⊗
l=1

 1∑
kl=0

ωjkl2
n−l |kl〉


=

1√
N

n⊗
l=1

(
|0〉+ wj2

n−l |1〉
)

= (?)

We now observe that wj2
n−l

= (e
2πi
N )j2

n−l
=
(
e

2πi
2n

)j2n−l
= e2πi(j2−l), also rewriting j in

binary basis we get

j2−l = 2−l
n∑
r=1

jr2
n−r =

n∑
r=1

jr2
n−r−l =

n−l∑
r=1

jr2
n−r−l +

n∑
r=n−l+1

jr2
n−r−l = α(l) + β(l)

Since in the first sum r ≤ n − l, then n − l − r ≥ 0 and α(l) ∈ N. This obviously does
not apply to β(l). It will be convenient to rewrite the latter quantity representing it as a
binary fraction, that is, as an expression of the form 0.jl...jm with coefficients in {0, 1},
which uniquely encodes the quantity 1

2jl + 1
22
jl+1 + · · · + 1

2m−l+1 jm. With this premise
β(l) = 0.jn−l+1jn−l+2 · · · jn and therefore

e2πi(j2−l) = e2πi(α(l))e2πi(β(l)) = e2πi[0.jn−l+1jn−l+2···jn]

We can now go back to work on the main expression, obtaining:

(?) =
1√
N

n⊗
l=1

(
|0〉+ e2πi[0.jn−l+1...jn]|1〉

)
=

1√
N

(
|0〉+ e2πi[0.jn]|1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi[0.j1...jn]|1〉

)
This reformulation of the quantum Fourier transform allows us to deduce its circuit rep-
resentation. The latter will in fact be made up by Hadamard, phase, and swap gates. Let
us see how this can be done.

We first observe that given a register of n qubit |j1〉 ⊗ · · · ⊗ |jn〉, if we apply a Hadamard
gate to the first qubit we get

H(|j1〉)⊗ |j2...jn〉 =
1√
2

(|0〉+ e2πi[0.j1]|1〉)⊗ |j2...jn〉 (A.2)

Indeed if j1 = 1 then e2πi[0.1] = e
2πi
2 = eπi = −1, otherwise if j1 = 0 then e2πi[0.0] = e0 = 1.

Recall now that the Rk phase operator leaves the |0〉 state unchanged and adds a phase

factor to the state |1〉 equal to e
2πi

2k . Starting from this gate we consider the controlled
operator C −Rk (which now acts on two qubits) defined by the matrix

C −Rk :=

[
Id 0
0 Rk

]
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which applies a phase factor to the target qubit if and only if the control qubit is in state
|1〉. We observe that applying C −R2 to the expression (A.2) we get

1√
2

(|0〉+ e2πi[0.j1j2]|1〉)⊗ |j2...jn〉

Indeed, since e2πi[0.j1j2] = e2πi[0.j1]e2πi
j2
4 , if j2 = 0 then no phase factor is applied, while if

j2 = 1 we apply a phase factor equal to e
2πi
22 .

In a similar way we can apply in succession the gates C −R3, C −R4, ..., C −Rn and the
final state of the system will be

1√
2

(|0〉+ e2πi[0.j1j2...jn]|1〉)⊗ |j2...jn〉

We can repeat the same steps for the other qubit as well and thus obtain

1√
N

(|0〉+ e2πi[0.j1j2...jn]|1〉)⊗ · · · ⊗ (|0〉+ e2πi[0.jn]|1〉)

This expression is essentially identical (except for the qubit order) to our reformulation
of QFT (|j〉), and with at most n/2 swap gate we can swap the qubit of our circuit to
get exactly the same expression. The work we have done so far allows us to give a circuit
representation of the QFT, which we present in Figure A.1.

|j1〉 H R2 . . . Rn−1 Rn ×

|j2〉 • . . . H . . . Rn−2 Rn−1 . . . ×

...
...

...

|jn−1〉 • • . . . H R2 ×

|jn−1〉 • • . . . • H ×

Figure A.1: Circuit representation of the QFT.

Observe that to make a circuit that allows us to compute the quantum Fourier Transform
we needed n + (n − 1) + · · · + 1 = n(n+ 1)/2 gates (both Hadamard and phase gates).
We also used n/2 swap gates. Total complexity is therefore O(n2). Consider that in the
classical case, always for N = 2n elements, the best algorithms to compute the discrete
Fourier transform work in O(n2n) operations.

A.3 Quantum Algorithms

The Fourier transform we just showed is the key for a lot of quantum algorithms. We
briefly expose those which are relevant for our discussion.

Phase estimation

This algorithm allows to obtain an estimate of an eigenvalue of a unitary matrix starting
from the corresponding eigenvector. Let us see why the algorithm has this name, or what
the phase has to do with the eigenvalues of a unitary matrix. Given a generic unitary
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operator U on n qubit, suppose λ is the eigenvalue corresponding to an eigenvector |u〉.
Since U is unitary, its eigenvalues are complex numbers with modulo equal to 1, and

λ = e2πiϕ ϕ ∈ [0, 1)

Therefore estimating λ is equivalent to estimate ϕ, which is the phase. We will not go
further into this topic, and let us just remember that the circuit implementation of this
algorithm is possible thanks to the QFT implementation we described earlier. Phase
estimation plays a major role in the next algorithm.

Order estimation

The problem we would like to solve is to find the order r of a given element x in ZN .
This problem has exponential complexity in logN for a classical computer, however in the
quantum computing world there is an algorithm which solves the problem in O((logN)3)
operations. This algorithm essentially consists in applying the phase estimation algorithm
to the unitary operator U defined by

U |y〉 = |xy (mod N)〉

where |y〉 is a generic state of a qubit register, indeed we observe that each vector of the
form

|us〉 =
1√
r

r−1∑
k=0

e−2πik s
r |xk (mod N)〉

is an eigenvector of U with eigenvalue λs = e2πi s
r , indeed:

U |us〉 =
1√
r

r−1∑
k=0

exp

[
−2πiks

r

]
|xk+1 (mod N)〉

=
1√
r

r∑
k=1

exp

[
−2πi(k − 1)s

r

]
|xk (mod N)〉

=
1√
r

r−1∑
k=0

exp

[
−2πi(k − 1)s

r

]
|xk (mod N)〉

= exp

[
2πis

r

]
1√
r

r−1∑
k=0

exp

[
−2πiks

r

]
|xk (mod N)〉

= exp

[
2πis

r

]
|us〉

Therefore, by applying the the phase estimation algorithm, we obtain an accurate approx-
imation of the phase s/r. Since the resulting phase ϕs is an approximation of a rational
number, if we could compute the closest fraction to ϕs, we would have a chance of getting
r. There are some classical algorithms that, using the continued fractions, allow to solve
this problem. Again, we do not describe the algorithm in detail, and we limit ourselves to
its essential description. Total complexity occurs to be O((logN)3).

Shor

We have laid the basis for understanding Shor’s algorithm. The starting problem is the
following: given a positive integer N , what is the prime factorization of N? We show that
this problem is equivalent to the order finding problem discussed above.
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Theorem A.3. Let N be a composite number and let x ∈ ZN be a solution of{
x2 − 1 ≡ 0 (mod N)

x ± 1 6≡ 0 (mod N)

Then at least one of mcd(x−1, N) and mcd(x+ 1, N) is a non trivial factor of N and can
be computed in O((logN)3) operations with Euclide’s algorithm.

We can use this result to our advantage in the following way: given x ∈ ZN , we know
how to compute its order t in polynomial time. If its order is even, and if x

t
2 satisfies the

equation above, i.e. x
t
2 ± 1 6≡ 0 (mod N) (the condition can be relaxed with x

t
2 + 1 6≡ 0

(mod N), since t is the order of x), then

(x
t
2 )2 − 1 ≡ (x

t
2 − 1)(x

t
2 + 1) ≡ 0 (mod N)

Then at least one between mcd(x
t
2 − 1, N) and mcd(x

t
2 + 1, N) provides a non-trivial

factor of N .

The second result we recall indirectly determines the probability of finding a non-trivial
factor of any composite number, and composes the last piece to be able to state and
understand Shor’s algorithm.

Theorem A.4. Let N be an odd composite integer number, whose prime factorization is
N = pα1

1 · · · pαmm . If x ∈ ZN is a random integer such mcd(x,N) = 1, then, denoting with
r its order in ZN we have that P(r is even and x

r
2 + 1 6≡ 0 (mod N)) > 1− 1

2m .

With these premises Shor’s algorithm naturally follows: given a composed number N we
proceed as follows.

1. Choose a random integer x ∈ ZN \ {0}.

2. With Euclide we compute mcd(x,N). If this value is greater of 1 then we have found
a non-trivial factor of N , otherwise we proceed with the next step.

3. With the quantum algorithm to solve the order-finding problem we compute r, the
order of x in ZN .

4. If r is odd, or if x
r
2 + 1 ≡ 0 (mod N) then we go back to step 1, otherwise we

proceed.

5. With Euclide we compute mcd(x
r
2 − 1, N) and mcd(x

r
2 + 1, N). If either one turns

out to be a non-trivial factor of N then the algorithm ends successfully, otherwise
we start over from step 1 with a new x.

The fact that the algorithm could fail at the last step is due to the outcome of the quantum
algorithm in step 3, which could give an incorrect estimate on the order r.
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