The Bombieri-Vinogradov Theorem

Giovanni Tognolini

University of Trento

July, 2022

Index

• Framework

2 Dirichlet characters

3 Main proof

4 Extra: The large sieve

• Framework

2 Dirichlet characters

3 Main proof

4 Extra: The large sieve

What can we say about the distribution of primes?

$$\pi(x) := \sum_{p \le x} 1$$

Mathematicians tried to study the asymptotic behaviour of this function.

(University of Trento) July, 2022

Prime Number Theorem

$$\pi(x) pprox rac{x}{\log x}$$

What can we say about the distribution of primes in arithmetic progression?

$$\pi(x; a, q) := \sum_{\substack{p \le x \\ p \equiv a \bmod q}} 1$$

Mathematicians tried to study the asymptotic behaviour of this function.

July, 2022

Dirichlet Theorem

$$\lim_{x \to \infty} \pi(x; a, q) = \infty \iff (a, q) = 1$$

From now on we consider a, q s.t. (a, q) = 1.

We would like to do more

$$\pi(x; a, q) = \sum_{\substack{p \le x \\ p \equiv a \bmod q}} 1$$

- There are $\phi(q)$ elements coprime with q.
- We expect that primes equally distributes in each of the $\phi(q)$ congruence classes. Ideally:

$$\pi(x; a, q) \approx \frac{\pi(x)}{\varphi(q)}$$

(University of Trento) July, 2022

PNT for arithmetic progressions

$$\pi(x; a, q) \approx \frac{\pi(x)}{\varphi(q)} \approx \frac{x}{\log x} \cdot \frac{1}{\varphi(q)}$$

What about the error term?

Clearly:

$$\pi(x; a, q) = \frac{x}{\log x \cdot \varphi(q)} + o\left(\frac{x}{\log x}\right)$$

But we would like to have a more precise estimate.

This is the starting point of the Bombieri-Vinogradov theorem. Before stating the BV theorem, we rewrite π in a different way (less intuitive, but more usable).

Replacing π with θ

$$\theta(x; a, q) := \sum_{\substack{p \le x \\ p \equiv a \bmod q}} \log p$$

$$\begin{cases} \pi(x; a, q) = \frac{\theta(x; a, q)}{\log x} + \int_2^x \frac{\theta(t; a, q)}{t(\log t)} dt \\ \theta(x; a, q) = \pi(x; a, q) \log x - \int_2^x \frac{\pi(t; a, q)}{t} dt \end{cases}$$

So that we can work with θ and then convert any estimate into an estimate for π , and vice-versa.

However, θ is still not the most convenient form to work with.

▼□▶ ▼□▶ ▼■▶ ▼■ り9○

Replacing θ with ψ

$$\psi(x; a, q) := \sum_{\substack{n \le x \\ n \equiv a \bmod q}} \Lambda(n)$$

$$= \sum_{\substack{p^k \le x \\ p^k \equiv a \bmod q}} \log p$$

Observation

$$\psi(x; a, q) - \theta(x; a, q) \in O(x^{\frac{1}{2}}(\log x)^2)$$

In a nutshell

$$\pi \longleftarrow \theta \longleftarrow^{O(x^{\frac{1}{2}}(\log x)^2)} \psi$$

What can we say about ψ ?

Observation

If we assume GRH

$$\psi(x; a, q) = \frac{x}{\varphi(q)} + O(x^{\frac{1}{2}}(\log x)^2)$$

Equivalently:

$$\psi(x; a, q) - \frac{x}{\varphi(q)} \in O(x^{\frac{1}{2}} (\log x)^2)$$

We can consider

$$\Delta(x; q) := \max_{(a,q)=1} \sup_{y \le x} \left| \psi(y; a, q) - \frac{y}{\varphi(q)} \right|$$

This object represent the maximum possible error for any congruence class modulo q for numbers $\leq x$.

$$\sum_{q \leq O} \Delta(x;q) \in O(x^{\frac{1}{2}}Q) \qquad \qquad \text{(barring logarithms)}$$

◆□▶ ◆□▶ ◆■▶ ◆■▼ か9◆

What can we say without assuming GRH?

The strongest known result for an individual pair a and q is the following:

Theorem (Siegel-Walfisz)

Fix a real number A > 0. If (a, q) = 1 and $q \le (\log x)^A$, we have

$$\psi(x; q, a) - \frac{x}{\varphi(q)} \in O_A(x \exp(-c\sqrt{\log x}))$$

So that:

$$\sum_{q \le Q} \Delta(x; q) \in O(Qx \exp(-c\sqrt{\log x}))$$

Still worse than our previous estimate with GRH.

Another estimate

$$\Delta(x; q) := \max_{(a,q)=1} \sup_{y \le x} \left| \psi(y; a, q) - \frac{y}{\varphi(q)} \right|$$

$$\leq \max_{(a,q)=1} \sup_{y \le x} \left\{ \left| \psi(y; a, q) \right|, \left| \frac{y}{\varphi(q)} \right| \right\}$$

$$\leq \max_{(a,q)=1} \left\{ \left| \psi(x; a, q) \right|, \left| \frac{x}{\varphi(q)} \right| \right\} \le (\star)$$

Observation

$$\psi(x; a, q) = \sum_{\substack{n \le x \\ n \equiv a \bmod q}} \Lambda(n) \le \left(\frac{x}{q} + 1\right) \log x \approx \frac{x \log x}{q}$$

$$\varphi(q) \gg \frac{q}{\log(q+1)} \Longrightarrow \frac{x}{\varphi(q)} \ll \frac{x \log(q+1)}{q} \ll \frac{x \log x}{q}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めの○

(University of Trento) July, 2022

$$(\star) \ll \frac{x \log x}{q}$$

So that

$$\sum_{q \le Q} \Delta(x; q) \ll \sum_{q \le Q} \frac{x \log x}{q}$$

$$\ll x(\log x)(\log Q)$$

$$\ll x(\log x)^2$$

(□) (□) (□) (□) (□) (□) (□)

(University of Trento)

July, 2022

Results comparison

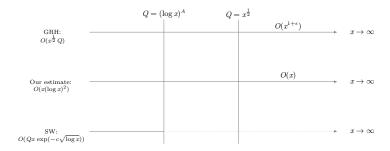


Figure: Asymptotic growth of $\sum_{q < Q} \Delta(x; q)$.

The more interesting case is given by $Q \le x^{\frac{1}{2}}$.

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 ○ ○

The main theorem

Theorem (Bombieri-Vinogradov)

Fix A > 0. For all $x \ge 2$ and all $Q \in [x^{\frac{1}{2}}(\log x)^{-A}, x^{\frac{1}{2}}]$, we have

$$\sum_{q \le Q} \Delta(x; q) \ll x^{\frac{1}{2}} Q(\log x)^5$$

where the absolute constant depends only on A.

Framework

Dirichlet characters

3 Main proof

4 Extra: The large sieve

A useful tool: Dirichlet characters

Definition

A Dirichlet character (of period q) is a function $\chi: \mathbb{Z} \to \mathbb{C}$ which is:

- \bigcirc periodic modulo q;
- 2 totally multiplicative $(\chi(nm) = \chi(n)\chi(m));$
- 3 satisfies $\chi(1) = 1$;
- **9** satisfies $\chi(n) = 0$ whenever $(n, q) \neq 1$.

Example (Principal character modulo q)

$$\chi_0(n) := \begin{cases} 1 & \text{if } (n, q) = 1 \\ 0 & \text{otherwise} \end{cases}$$

So that, if q = 10, the result is

n	0	1	2	3	4	5	6	7	8	9
$\chi_0(n)$	0	1	0	1	0	0	0	1	0	1

Dirichlet characters $\pmod{2}$

n	0	1
$\chi_1(n)$	0	1

Dirichlet characters (mod 3)

n	0	1	2
$\chi_0(n)$	0	1	1
$\chi_1(n)$	0	1	-1

Observation

$$\#\{\chi \mod q\} = \varphi(q)$$

Two types of characters: primitive and imprimitive

Suppose we have a Dirichlet character mod 5

n	0	1	2	3	4
$\chi_1(n)$	0	1	i	-i	1

We would like to build a new character mod $(2 \cdot 5)$ starting from χ_1

n	0	1	2	3	4	5	6	7	8	9
$\chi_2(n)$	0		0		0	0	0		0	

Now we fill the remaining values:

n	0	1	2	3	4	5	6	7	8	9
$\chi_2(n)$	0	1	0	-i	0	0	0	i	0	1

Formally: $\chi_2(n) = \chi_1(n)\chi_0(n)$.

Observation

Maps build up in this way are indeed characters.

Why are we making this distinction?

- Every imprimitive character is induced by a unique primitive character with a smaller period.
- Lots of estimates in number theory involve primitive characters.

 \downarrow

We will convert sums over characters into sums over primitive characters, and try to estimate these objects.

One last object...

Definition (The twisted-psi function)

$$\psi(x;\chi) = \sum_{n \le x} \chi(n) \Lambda(n)$$

...which connects characters and primes

Proposition

$$\psi(x; a, q) = \frac{1}{\varphi(q)} \sum_{\chi \bmod q} \overline{\chi(a)} \psi(x; \chi)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣♀○

Another advantage...

Theorem (Sieleg-Walfisz variant)

- A > 0;
- $q \leq (\log x)^A$;
- χ Dirichlet character modulo q.

Then:

$$\psi(x;\chi) - \delta(\chi)x \ll_A x \exp(-c\sqrt{\log x})$$

Framework

Dirichlet characters

3 Main proof

4 Extra: The large sieve

The Bombieri-Vinogradov theorem

$$\sum_{q \le Q} \Delta(x; q) \ll x^{\frac{1}{2}} Q(\log x)^5$$

We have to bound the following expression:

$$\sum_{q \le Q} \Delta(x; q) = \sum_{q \le Q} \max_{(a, q) = 1} \sup_{y \le x} \left| \psi(y; a, q) - \frac{y}{\varphi(q)} \right| = (\star)$$

Observation

$$\psi(y; a, q) = \frac{1}{\varphi(q)} \sum_{\chi \bmod q} \overline{\chi(a)} \cdot \psi(y; \chi) \qquad \text{if } (a, q) = 1$$

$$y = y \cdot \sum_{\chi} \delta(\chi) = y \sum_{\chi} \overline{\chi(a)} \delta(\chi) = \sum_{\chi} \overline{\chi(a)} \delta(\chi)$$

$$y = y \cdot \sum_{\chi \bmod q} \delta(\chi) = y \sum_{\chi \bmod q} \overline{\chi(a)} \delta(\chi) = \sum_{\chi \bmod q} \overline{\chi(a)} \delta(\chi) y$$

$$\begin{split} \left| \psi(y; a, q) - \frac{y}{\varphi(q)} \right| &= \frac{1}{\varphi(q)} \cdot \left| \sum_{\chi \bmod q} \overline{\chi(a)} \psi(y, \chi) - \overline{\chi(a)} \delta(\chi) y \right| \\ &\leq \frac{1}{\varphi(q)} \sum_{\chi \bmod q} \left| \psi(y, \chi) - \delta(\chi) y \right| \end{split}$$

(University of Trento) July, 2022

$$(\star) \le \sum_{q \le Q} \frac{1}{\varphi(q)} \sum_{\chi \mod q} \sup_{y \le x} |\psi(y, \chi) - \delta(\chi)y| = (\star \star)$$

Now we would like to apply the following estimate.

Theorem (Basic Mean Value Theorem)

Let

$$T(x, Q) := \sum_{q \le Q} \frac{q}{\varphi(q)} \sum_{\chi * \bmod q} \sup_{y \le x} |\psi(y; \chi^*)|$$

Then

$$T(x, Q) \ll \left(x + x^{\frac{5}{6}} Q + x^{\frac{1}{2}} Q^2\right) (\log x Q)^4$$

Problems

- sums over different characters;
- sup over different functions;
- ...

First we try to reduce our estimate to a sum over primitive characters

How to do it?

We have an arbitrary character $\chi \mod q$, and we know that for some $q^*|q$ there is a primitive character $\chi^* \mod q^*$ which induces χ .

,

We would want to believe that $\psi(y;\chi)$ and $\psi(y;\chi^*)$ must be close.

1

In this way we can sum on primitive characters and pay this exchange with a (hopefully) acceptable error.

Proposition

$$\psi(y;\chi) - \psi(y,\chi^*) \in O((\log y)(\log q))$$

$$\begin{split} (\star\star) &= \sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{\chi \bmod q} \sup_{y \leq x} |\psi(y,\chi) - \delta(\chi)y| \\ &= \sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{q^*|q} \sum_{\chi^* \bmod q^*} \left(\sup_{y \leq x} |\psi(y,\chi^*) - \delta(\chi^*)y| + O(\log q \cdot \log x) \right) \\ &\leq \sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{q^*|q} \sum_{\chi^* \bmod q^*} \left(\sup_{y \leq x} |\psi(y,\chi^*) - \delta(\chi^*)y| \right) + \\ &+ \sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{q^*|q} \sum_{\chi^* \bmod q^*} \left(O(\log q \cdot \log x) \right) \end{split}$$

Observation

The second term is $O(Q \cdot (\log x)^2)$, and can be pulled out, and we are left to work with the first sum only.

4 D > 4 B > 4 E > 4 E > E 9990

The first sum is

$$\begin{split} & \sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{q^* \mid q} \sum_{\chi^* \bmod q^*} \sup_{y \leq x} |\psi(y, \chi^*) - \delta(\chi^*) y| \\ \leq & (\dots \text{ standard estimates } \dots) \\ \leq & \sum_{q < Q} \frac{\log Q}{\varphi(q)} \sum_{\chi^* \bmod q} \sup_{y \leq x} |\psi(y, \chi^*) - \delta(\chi^*) y| \end{split}$$

Theorem (Siegel-Walfisz variant)

Suppose that A>0 is a fixed real number. When $q<(\log x)^A$ and χ is a Dirichlet character modulo q, we have

$$\psi(x;\chi) - \delta(\chi)x \ll_A x \cdot \exp(-c(\sqrt{\log x}))$$

where c is an absolute positive constant

We can try to split the above summation.

◆□▶ ◆圖▶ ◆團▶ ◆團▶ ■

$$\sum_{q < (\log x)^A} \frac{\log Q}{\varphi(q)} \sum_{\chi^* \bmod q} \sup_{y \le x} |\psi(y, \chi^*) - \delta(\chi^*)y| \ll (\log x) (\log x)^A x \exp(-c(\sqrt{\log x}))$$

$$\ll \text{ estimates with } Q \ge x^{\frac{1}{2}} (\log x)^{-A}$$

$$\ll x^{\frac{1}{2}} Q (\log x)^5$$

Now we have to deal with the remaining sum

$$\sum_{(\log x)^A \le q \le Q} \frac{\log Q}{\varphi(q)} \sum_{\chi^* \bmod q} \sup_{y \le x} |\psi(y, \chi^*) - \delta(\chi^*)y|$$

Observation

In this sum q is always greater than 2.

 \implies Every primitive character χ^* modulo q is non-principal.

$$\Longrightarrow \delta(\chi^*) = 0.$$

◆ロト ◆団ト ◆重ト ◆重 ・ りゅぐ

It remains thus to deal with

$$\sum_{(\log x)^A \le q \le Q} \frac{\log Q}{\varphi(q)} \sum_{\chi^* \bmod q} \sup_{y \le x} |\psi(y, \chi^*)| = (*)$$

Our aim (BMVT term)

$$T(x, Q) := \sum_{q \le Q} \frac{q}{\varphi(q)} \sum_{\chi^* \bmod q} \sup_{y \le x} |\psi(y; \chi^*)|$$

We are almost done, we just have to

- get rid of the log Q factor;
 - have a q factor inside the sum;
 - adapt the sum.

◆ロ → ◆母 → ◆ 種 → ■ り へ ②

Without going too technical

- Apply the previous modification;
- use some easy estimates and some known results in number theory;
- apply the BMVT theorem;

$$(*) \ll x^{\frac{1}{2}} Q(\log x)^5$$

Bombieri statement

Bombieri theorem

Framework

② Dirichlet characters

3 Main proof

4 Extra: The large sieve

Why?

We used without proof the BMVT (quite technical proof).

Among technical results, the proof involves a particular tool (the large sieve), which is useful in many other fields in number theory.

Makes more sense to talk about the large sieve.

What is a large sieve inequality?

- $N, M, Q \in \mathbb{N};$
- $(a_n)_n$ sequence of real numbers;
- $S(\alpha) := \sum_{n=M+1}^{N+M} a_n e(n\alpha)$

Then we would like to have a function $\lambda(N, Q)$ s.t.

$$\sum_{q \leq Q} \sum_{\substack{a=1 \ (a,a)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^2 \leq \lambda(N,Q) \sum_{n=M+1}^{N+M} |a_n|^2$$

An inequality of this form is called a "large sieve inequality".

4日 → 4部 → 4 種 → 4 種 → 1 型 の 9 (で)

Observation

There is at least a function $\lambda(N, Q)$ which satisfies

$$\sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^{2} \le \lambda(N,Q) \sum_{n=M+1}^{N+M} |a_{n}|^{2}$$

Indeed applying Cauchy-Schwarz

$$\sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^2 = \sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \left| \sum_{n=M+1}^{M+N} a_n e(na/q) \right|^2$$

$$\le \sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \sum_{n=M+1}^{M+N} |a_n|^2$$

$$= \left(\sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} 1 \right) \left(\sum_{n=M+1}^{M+N} |a_n|^2 \right)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めのの

What do we want from this inequality?

- Find good functions λ which satisfies the inequality;
- ② instantiate the inequality with parameters $N, M, Q, (a_n)$ of our choice to get bounds for particular expressions.

ロト 4月 4 三 4 三 ト コ ののの

July, 2022

Best result

$$\lambda(N,Q) := N - 1 + Q^2$$

works, and this is the best possible bound that can be obtained.

Getting more general

Where are we summing over?

$$\sum_{q \le Q} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^{2}$$

 $\frac{a}{q}$ are all rational number in [0,1] whose denominator in reduced form is $\leq Q$.

We denote this set with \mathcal{F}_Q

Observation

 \mathcal{F}_Q is equidistributed with level $1/Q^2$, i.e. for all $\alpha, \beta \in \mathcal{F}_Q$

$$||\alpha-\beta||\geq \frac{1}{Q^2}.$$

We can rewrite the large sieve inequality in the following way:

$$\sum_{\alpha \in \mathcal{F}_Q} |S(\alpha)|^2 \le \lambda(N, Q) \sum_{n=M+1}^{M+N} |a_n|^2$$

Observation

This new formulation suggests that we could try to establish the inequality with more general sets (maybe equidistributed).

We try to substitute \mathcal{F}_Q with a general equidistributed \mathcal{F}_{δ} . We now look for a function $\lambda_0(N, \delta)$ s.t.

$$\sum_{\alpha \in \mathcal{F}_{\delta}} |S(\alpha)|^2 \le \lambda_0(N, \delta) \sum_{n=M+1}^{M+N} |a_n|^2$$

Observation

If we find a bound λ_0 for this inequality, then the large sieve inequality works with

$$\lambda(N, Q) = \lambda_0 \left(N, \frac{1}{Q^2}\right)$$

Best result

$$\lambda_0(N,\delta) := N - 1 + \delta^{-1}$$

works, and this is the best possible bound that can be obtained.

The large sieve: applications

- (Bombieri) Basic mean value theorem;
- (Linnik) Distribution of quadratic nonresidues;
- \bullet (Rényi) Every large even number 2n can be expressed in the form

$$2n = p + P_k$$

where p is a prime and P_k is the product of at most k primes.

Recap What did we see?

- Framework;
- tools:
 - ► Dirichlet characters;
 - ▶ large sieve inequality;
- main proof.

Thanks

Bibliography

Sahay, Anurag, and SRF Application No. "The Bombieri-Vinogradov Theorem."

Park., Peter S. "The Bombieri-Vinogradov theorem." Expository, preprint available http://web. math. princeton. edu/pspark/papers/bv. pdf (2016): 1-33.

Vaughan, R. C. "The Bombieri-Vinogradov Theorem." (1965).